Reg.	No.	:	***********	***********************	
Name					

II Semester M.Sc. Degree (C.B.S.S. - Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS

MAT2C08: Advanced Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- A bounded metric space need not be totally bounded. Justify.
- 2. Let (X, τ) be a topological space and $A \subseteq X$, then define the subspace topology τ_A induced on A. Also if A is compact in (X, τ), then prove that A is compact in (A, τ_A) .
- Not every T₀ space is T₁. Justify.
- 4. Give an example of a normal space with a subspace that is not normal.
- 5. Prove that an open interval in $\mathbb R$ with subspace topology is homeomorphic to $\mathbb R$.
- 6. Let (X, τ) be a topological space and $f, g: X \to I$ be continuous functions. When is f homotopic to g? $(4 \times 4 = 16)$

PART-B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Prove that every compact metric space has the Bolzano-Weierstrass property. b) Show that a closed subset of a countably compact space is countably
 - compact.

P.T.O.

K22P 0191

topology on X.

- 8. a) Prove that every compact subspace of a Hausdorff space is closed. b) Show that the property of being a T₁ - space is preserved by one-to-one,
 - onto, open mappings and hence is a topological property. c) In a topological space $(X,\,\tau)$, prove that an arbitrary intersection of closed
 - sets is closed and finite union of closed sets is closed.
- 9. a) Prove that every compact space is locally compact. Also show that ${\mathbb R}$ is locally compact. b) Show that every open continuous image of a locally compact space is locally
 - compact. c) Prove that every locally compact Hausdorff space is a regular space.
 - Unit II

10. a) Prove that a topological space (X, τ) is a T_1 – space iff τ contains the cofinite

- b) Show that being a regular space is a heriditory property. c) Prove that every metric space is a completely regular space.
- 11. a) Let $\{(X_{\alpha}, \tau_{\alpha}) : a \in \Lambda\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that (X,τ) is regular if and only if $(X_{\alpha},\tau_{\alpha})$ is regular for each $\alpha\in\Lambda$.
- b) Define a completely regular space. Prove that a T_1 space (X, τ) is completely normal if and only if every subspace of it is normal.
- 12. a) Define order topology on X. If (X, \leq) is an ordered set with order topology τ , then show that (X, τ) is a normal space. b) Show that every second countable regular space is normal.

b) Suppose $(X,\,\tau)$ is a topological space. Prove that the space X is normal iff

regular.

13. a) State Urysohn's Lemma and deduce that every normal space is completely

-3-

Unit - III

every continuous real function f defined on a closed subspace F of X into a

 $(4 \times 16 = 64)$

K22P 0191

- closed interval [a, b] has a continuous extension from $X \rightarrow [-1, 1]$. 14. a) State Alexander subbase theorem and using it prove that the product of compact spaces is compact.
- 15. a) State and prove Urysohn's Metrization Theorem. b) Let (X, τ) be a topological space, let $x_0 \in X$ and let $[\alpha] \in \Pi_1$ (X, x_0) . Prove that there is an $[\bar{\alpha}] \in \Pi_1$ (X, x₀) such that $[\alpha] \circ \bar{\alpha} = [\alpha][\bar{\alpha}] = [e]$, where [e]

b) For $n \in \mathbb{N}$, let (X_n, d_n) be a metric space and $X = \prod_{n \in \mathbb{N}} X_n$ and let τ be the

is the identity element of $\prod_1 (X, x_0)$.

product topology on X. Prove that (X, τ) is metrizable.