

Reg. No.	:	***************************************
Gry I		

Name :

III Semester M.Sc. Degree (CBSS - Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS

MAT 3 E02: Probability Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- A) Suppose a coin is tossed 3 times, if A = {all of 3 tosses result in same outcome} and B = {the tosses that have at most one tail}, then find A \cup B and $A \cap B$.
 - B) Explain borel field in a real line R2.
 - C) If X and Y are simple random variable then show that E(X + Y) = E(X) + E(Y).
 - D) Define moment generating function of a random variable X. Give an example.
 - E) Define characteristic function of a distribution function F. Write the characteristic function of exponential distribution.
 - F) State inversion formula of characteristic function.

PART - B

Answer 4 questions not omitting any Unit. 16 marks each.

 $(4 \times 16 = 64)$

Unit - I

- II. A) Show that a field is closed under finite unions. Also prove that a class closed under complementation and finite union is a field.
 - B) Given a class of sets $\{A_i, i = 1, 2, \ldots, n\}$ then show that there exist a class of sets $\{B_i, i=1, 2, \ldots, n\}$, such that $\bigcup_{i=1}^n A_i = \sum_{i=1}^n B_i$. C) Show that borel function of a \mathcal{A} – measurable function X is \mathcal{A} – measurable
 - and induces a sub σ -field of that induced by X. P.T.O.

K22P 1413

-2-

- III. A) Prove that Borel function of a measurable function X is \mathcal{A} -measurable and includes a subfield of that induced by X. B) Show that X is a random variable if and only if X^{-1} (\mathcal{C}) $\subset \mathcal{A}$, where \mathcal{C} is any
 - class of subsets of ${\mathbb R}$ that generates ${\mathcal B}\text{-Borel}$ set. C) Prove that continuous real valued function on ${\mathbb R}$ are Borel functions.
- IV. A) If $\mathcal A$ is class of subset of Ω and is a σ -field, then show that class $\mathcal B$ of all sets
- whose inverse images belongs to $\ensuremath{\mathcal{A}}$ is also a $\sigma\text{-field}.$ B) If c is a σ -field of subsets of Ω^1 then show that $X^{-1}(c)$, is a σ -field of subsets
 - of Ω also show that $\sigma\{X^{-1}(\mathcal{C})\} = X^{-1}\{\sigma(\mathcal{C})\}.$ C) Prove that the σ -field induced by simple function is the minimal σ -field,
 - containing the partition $\{A_1, A_2, \dots, A_n\}$. Unit - II V. A) State and prove Jordan Decomposition theorem on distribution function.

- B) Let F_D be a non decreasing finite function defined on D, a dense subset of R. Let $F(x) = \inf_{X_n \ge X} F_D(x_n), x_n \in D, x \in R \cap D^c$
 - $= F_D(x), x \in D.$ Then show that F(x) is a distribution function.

VI. A) State and prove Fatou's Lemma for expectations. B) State and prove Dominated convergence theorem.

- VII. A) If $Y \le X_n$; Y integrable then show that $E(\lim_{n \to \infty} X_n) = \lim_{n \to \infty} E(X_n)$.
 - B) State and prove monotone convergence theorem for expectations.
 - Unit III
- VIII. If ϕ is the characteristic function of a general d.f. F then show that A) ϕ is continuous and $|\phi(u)| \le \phi(0) = F(+\infty) - F(-\infty)$. $\phi(-u) = \phi^-(u)$, where $\phi^-(u)$ is the complex conjugate of $\phi(u)$. B) If $\phi(u)$ is the characteristic function of a random X, then characteristic function of a + bX is the exp (iua) ϕ (bu). ϕ is real if and only if X is symmetric about

B) State and prove Helly Convergence Theorem. C) Let $\{F_n\}$ of d.f.'s convergence to F weakly that is $F_n \xrightarrow{W} F$, then show that

0

IX. A) What is the characteristic function of a Cauchy distribution with probability

density function $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$?

-3-

K22P 1413

- F is unique. X. A) Show that a sequence {Fn} of d.f.'s converges weakly if and only if it converges on a dense Set D in R. B) State and prove Second limit theorem.