Reg. No.:....

Name :

III Semester M.Sc. Degree (CBSS - Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS

MAT3C14 – Advanced Real Analysis

Time: 3 Hours

Max. Marks: 80

PART – A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Let B be the uniform closure of an algebra A of bounded functions. Then prove that B is a uniformly closed algebra.
- 2. Give an example of a functions with for converges to f, but for does not converges to f'. Justify your answer.
- Define orthogonal system of functions. Give example with justification.
- Prove that lim_{x→+∞}x^{-cc} log x = 0.
- 5. Prove that the existence of all partial derivatives does not imply the differentiability.
- 6. Explain directional derivative of f at x in the direction of a unit vector u and continuously differentiable functions.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks. $(4 \times 16 = 64)$ Unit - I

7. a) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t\to x}f_n(t)=A_n$, $(n=1,\,2,\,3,\,...)$. Then Prove that $\{A_n\}$ converges and $\lim_{t\to\infty} f(t) = \lim_{t\to\infty} A_n$.

P.T.O.

K22P 1411

-2-

b) Suppose K is compact, and

- i) {f_n} is a sequence of continuous functions on K,
- ii) {f_n} converges pointwise to a continuous function f on K,
- iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, n = 1, 2, 3 ... Then prove that $f_n \to f$ uniformly 8. a) Prove that there exists a real continuous function on the real line which is
- nowhere differentiable. b) Prove that every uniformly convergent sequence of bounded functions is
- uniformly bounded. 9. Let A be an algebra of real continuous functions on a compact set K. If A
- separates points on K and if A varnishes at no point of K, then prove that the uniform closure B of A consists of all real continuous functions on K. Unit – II

- 10. a) Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$, (|x| < R). Then prove that the series $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R+\epsilon,R-\epsilon]$, no matter which $\epsilon>0$ is chosen. Also prove that the function f is continuous and differentiable in (– R, R) and $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$, |x| < R. b) Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$,
 - (|x| < R). Then prove that f has derivatives of all orders in (-R, R) and derive the formulas. State and prove Parseval's Theorem. a) Define Gamma Function. Prove that logΓ is convex on (0, ∞).
 - b) State and prove Stiriling's Formula.
 - Unit III
 - 13. a) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dim $X \le r$.

- b) Suppose X is a vector space, and dim X = n. Prove that i) A set E of n vectors in X spans X if and only if E is independent.

iii) If $1 \le r \le n$ and $\{y_1, y_2, ..., y_r\}$ is an independent set in X then X has a basis containing $\{y_1, y_2, ..., y_r\}$.

14. a) Suppose f maps an open set $E \subset R^n$ into R^m . Then prove that $f \in C(E)$

K22P 1411

if and only if the partial derivatives Difi exist and are continuous on E for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

ii) X has a basis and every basis consists of n vectors.

prove that $|f(b) - f(a)| \le M|b - a|$ for all $a \in E$, $b \in E$. State and prove implicit function theorem.

 Suppose f maps a convex open set E ⊂ Rⁿ into R^m, f is differentiable in E and there is a real number M such that $||f'(x)|| \le M$ for every $x \in E$. Then

-3-