Reg. No. :
Name :

IV Semester M.Sc. Degree (CBSS - Reg./Supple/Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS

MAT4C16: Differential Geometry

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 4 questions. Each question carries 4 marks.

- -1. Sketch the level set and graph of the function $f(x_1, x_2) = x_1 x_2$.
- 2. Show that the set S of all unit vectors at all points of \mathbb{R}^2 form a 3-surface in \mathbb{R}^4 . 3. Prove that a parametrized curve $\alpha:I\to S$ is a geodesic in S if and only if its
- covariant acceleration $[\dot{\alpha}]'$ is zero along α . 4. Let S be an n-surface in \mathbb{R}^{n+1} , let p, $q \in S$ and let α be a parametrized curve in S from p to q. Then prove that the parallel transport $P_\alpha:S_p\to S_q$ along α is a vectorspace isomorphism.
- 5. Show that the length of a parametrized curve is invariant under re-parametrization.
- Express torus as a parametrized surface in ℝ⁴.

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Sketch the vector field $\mathbb{X}(p) = (p, X(p))$ on \mathbb{R}^2 , where $X(x_1, x_2) = (x_2, x_1)$. Also find the integral curve through an arbitrary point (a, b).
 - b) Let U be an open set in \mathbb{R}^{n+1} and let $f:U\to\mathbb{R}$ be smooth. Let $p\in U$ be a regular point of f and c = f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\Delta f(p)]^{\perp}$.

P.T.O.

K22P 3320 4

- 8. a) State and prove Lagrange multiplier theorem in an n-surface in \mathbb{R}^{n+1} . b) If $S \subset \mathbb{R}^{n+1}$ is a connected n-surface in \mathbb{R}^{n+1} , then prove that on S there exist Discuss about the orientability of Mobious band.
- 9. a) Let \mathbb{X} be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Then prove that there exist a unique maximal integral curve α of $\mathbb X$ with $\alpha(0)=p$ and any other integral curve β with $\beta(0) = p$ will be a restriction of α .
 - b) Define the special linear group SL(2). Show that it will form a surface.

Unit - II

- 10. a) Let S be a regular, compact connected oriented n-surface in \mathbb{R}^{n+1} , exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$. Then show that the Gauss map maps S on to the unit sphere S^n . b) Define a geodesic and show that a geodesic have constant speed.
- 11. a) Let S denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius r > 0 in \mathbb{R}^3 . Show that α is a geodesic of S if and only if α is of the form $\alpha(t) = (r\cos(at + b), r\sin(at + b),$ ct + d) for some a, b, c, $d \in \mathbb{R}$. b) Define Levi-Civita parallel vector field on a surface S. Also state and prove
 - five properties of the Levi-Civita parallelism.
 - c) Find the Weingarten map of the cylinder $x_1^2 + x_2^2 = a^2$ of radius a > 0 in \mathbb{R}^3 .
- a) Show that every oriented plane curve has a local parametrization and the local parametrization of a plane curve is unique up to re-parametrization.
 - b) Let C be a circle $f^{-1}(r^2)$ where $f(x_1, x_2) = (x_1 a)^2 + (x_2 b)^2$ oriented by the outward normal $\frac{\nabla f}{||\nabla f||}$. Then obtain a global parametrization of C. Unit - III

- 13. a) Let C be an oriented plane curve. Then prove that there exist a global parametrization of C if and only if C is connected. b) Show that a line integral is invariant under re-parametrization.
- 14. a) Give an example of a 1-form on $\mathbb{R}^2 \{0\}$, which is not exact.
- - b) Let S be an oriented n-surface in \mathbb{R}^{n+1} and let v be a unit vector in S_p , $p \in S$. Then prove that there exist an open set $V \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(v) \cap V$ is a plane curve. More over show that the curvature at p of this curve, (suitably oriented) is equal to the normal curvature $\mathcal{K}(v)$.
- 15. a) On each compact oriented n-surface S in ℝⁿ⁺¹ prove that there exist a point p such that the second fundamental form at p is definite.
 - b) Let $\phi:U\to\mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p\in U.$ Then prove that there exist an open set $U_1\subset U$ about p such that $\phi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .