Reg.	No.	:	
			The second second second

Name :

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, April 2024 (2023 Admission) **MATHEMATICS**

MSMAT02C09/MSMAF02C09 : Advanced Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 5 questions from the following 6 questions. Each question carries 4 marks.

- Show that the set of integers is not well-ordered in the usual order.
- Does the set of rationals Q is compact? Justify your answer.
- 3. Show that the real line R has a countable basis.
- 4. Let f, g: $X \rightarrow Y$ be continuous; assume that Y is Hausdorff. Show that $\{x, f(x) = g(x)\}\$ is closed in X.
- 5. Give an example showing that a Hausdorff space with a countable basis need not be metrizable.
- 6. Show that the unit circle S1 is a one-point compactification of the unit $(5 \times 4 = 20)$ interval (0, 1).

PART - B

Answer any 3 questions from the following 5 questions. Each question carries 7 marks.

- 7. Prove the following: Every nonempty finite ordered set has the order type of a section $\{1, 2, ..., n\}$ of Z_+ , so it is well-ordered.
- Prove that every metrizable space is normal.

P.T.O.

K24P 1107

- 9. a) Prove that the product of two Lindelof space need not be Lindelof.
 - b) Prove that a subspace of a Lindelof space need not be Lindelof.
- Show that every locally compact Hausdorff space is regular.
- 11. Prove the following : Let $A \subset X$; let $f: A \to Z$ be a continuous map of A in to the Hausdorff space Z. There is at most one extension of f to a continuous function $(3 \times 7 = 21)$ $g: A \rightarrow Z$.

PART - C

Answer any 3 questions from the following 5 questions. Each question carries 13 marks.

- 12. Prove the following :
 - a) Every closed subspace of a compact space is compact.
 - Every compact subspace of a Hausdorff space is closed.
 - c) The image of a compact space under a continuous map is compact.
- 13. Prove the following:
 - a) A subspace of a Hausdorff space is Hausdorff.
 - b) A product of Hausdorff space is Hausdorff.
 - c) A product of regular space is regular.
- 15. State and prove Tietze Extension Theorem.
- State and prove Tychonoff Theorem.

14. State and prove The Urysohn lemma.

 $(3 \times 13 = 39)$