Reg. No.: Name :

Second Semester M.Sc. Degree (CBCSS - OBE - Regular) Examination, April 2024 (2023 Admission)

MATHEMATICS MSMAT02C10/MSMAF02C10: PDE and Integral Equations

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 5 questions from the following 6 questions. Each question carries 4 marks.

- 1. Show that $u(x,y) = e^{c_0x} \left[\int_0^x e^{-c_0\xi} c_1(\xi,y) d\xi + T(y) \right]$ where T(y) is determined by the initial condition is general solution of the equation $u_x = c_0 u + c_1$.
- 2. What do you mean by the term 'System of Characteristic equations'. Explain.

4. Consider the equation $u_{xx} - 6u_{xy} + 9u_{yy} = xy^2$. Find a coordinates system

- 3. Prove that the equation $x^2u_{xx} 2xyu_{xy} + y^2u_{yy} = 0$ is parabolic.
- (s, t) in which the equation has the form $9u_{tt} = \frac{1}{3}(s-t)t^2$. 5. Explain a Poisson's equation. Give an example.
- 6. What is a volterra equation of the second kind? Give an example. $(5 \times 4 = 20)$

P.T.O.

K24P 1108

PART - B

-2-

Answer any 3 questions from the following 5 questions. Each question carries 7 marks.

7. Using Lagrange Method, solve $-yu_x + xu_v = 0$.

- 8. Find the canonical form of the wave equation $u_{tt} = c^2 u_{xx}, -\infty \le a < x < b \le \infty, t > 0.$
- 9. Write the cauchy problem for the non homogeneous wave equation. Show that the cauchy problem for the non homogeneous wave equation admits at

most one equation.

- 10. Show that a necessary condition for the existence of a solution to the Neumann problem is $\int_{\partial D} g(x(s),y(s)) = \int_{D} F(x,y) dxdy$ where (x(s),y(s)) is a parametrization of ∂D .
- 11. Transform of the equation $\frac{d^2y}{dx^2} + \lambda y = 0$, y(0) = 0, y(1) = 0 in to a Fredholm $(3 \times 7 = 21)$ Integral Equation. PART - C

Answer any 3 questions from the following 5 questions. Each question carries 13 marks.

12. State and Prove The Existence and Uniqueness Theorem.

the equation has the canonical form w $_{\xi\,\eta}$ + $l_1[w]$ = G $(\xi,\,\eta),$ where w $(\xi,\,\eta)$ =

Find a coordinate system s = s(x,y), t = t(x,y) that transforms the equation in to its canonical form. Show that in this coordinate system the equation

13. a) Prove the following: Suppose that $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$ is hyperbolic in a domain D. Then there exist a coordinate system (ξ, η) in which

 $u(x(\xi,\eta),y(\xi,\eta)),l_1$ is a first order linear differential operator, and G is a function which depend on $au_{xx} + 2bu_{xy} + cu_{yy} + du_{x} + eu_{y} + fu = g$.

 $\mathbf{u}_{xx} - 2 \sin x \ \mathbf{u}_{xy} - \cos^2 \! x \ \mathbf{u}_{yy} - \cos x \ \mathbf{u}_y = 0.$

has the form $u_{st} = 0$, and find the general solution.

b) Consider the equation

Prove that the problem has at most one solution in $C^2(D) \cap C(\overline{D})$. b) Let D be a smooth domain. Then prove the following:

-3-

K24P 1108

i) The Dirichlet problem has at most one solution ii) If $\alpha \ge 0$, then the problem of the third kind has at most one solution. iii) If u solves the Neumann problem, then any other solution is of the problem

v = u + c, where c is a real number.

14. a) Consider the Dirichlet problem in a bounded domain :

 $\Delta u = f(x, y), (x, y) \in D,$

 $u(x, y) = g(x, y), (x, y) \in \partial D.$

- 15. a) Show that the characteristic values of $\,\lambda$ for the equation $y(x) = \lambda \int_0^{2\pi} \sin(x + \xi) y(\xi) d\xi$ are $\lambda_1 = 1/\pi$ and $\lambda_2 = -1/\pi$, with
 - corresponding characteristic functions of the form $y_1(x) = \sin x + \cos x$ and $y_2(x) = \sin x - \cos x$.
- b) Obtain the most general form of the equation $y(x)=\lambda\int_0^{2\pi}\sin\big(x+\xi\big)y(\xi)d\xi+F(x) \text{ when } F(x)=x \text{ and when } F(x)=1,$ under the assumption that $\lambda\neq\pm1/\pi.$ 16. Consider the integral equation $y(x) = \lambda \int_0^1 x \xi y(\xi) d\xi + 1$. i) Show that the iterative procedure will converge when $|\lambda| < 3$.
 - $y(x) = 1 + x \left(\frac{\lambda}{2} + \frac{\lambda^2}{6} + \frac{\lambda^3}{18} + \dots \right)$ iii) Show that the exact solution of the problem is $y(x) = 1 + \frac{3\lambda x}{2(3-\lambda)}$ $(\lambda \neq 3)$. (3×13=39)

ii) Show that the iterative procedure leads formally to the expression