

Reg. No.:

Name :

III Semester M.Sc. Degree (C.B.C.S.S. - OBE - Regular) Examination, October 2024

(2023 Admission)

MATHEMATICS/MATHEMATICS (MULTIVARIATE CALCULUS AND MATHEMATICAL ANALYSIS, MODELLING AND SIMULATION, FINANCIAL **RISK MANAGEMENT)**

Open Elective Course MSMAT03O03/MSMAF03O03 - Operations Research

Time: 3 Hours

Max. Marks: 80

Answer any five questions. Each question carries 4 marks :

- 1. Define and explain the general Linear Programming Problem.
- 2. Explain degeneracy in L.P. Problems.
- 3. Write the dual of the following LPP:

Minimize $x_1 - 3x_2 - 2x_3$ subject to $2x_1 - 4x_2 \ge 12$, $3x_1 - x_2 + 2x_3 \le 7$, $-4x_1 + 3x_2 + 8x_3 = 10$, x_1 , $x_2 \ge 0$ and x_3 unrestricted. 4. Explain the occurrence of loops in transportation array.

5. Write a short note on Integer Programming Problem (IPP). Illustrate with an

example.

Explain various types of games.

 $(5 \times 4 = 20)$

PART - B

Answer any three questions. Each question carries 7 marks :

- 7. Prove: The set S_p of feasible solutions if not empty is a convex set bounded from below and has at least one vertex.
- 8. Define the dual of the L.P. problem. Prove that the dual of a dual is the primal in L.P. problem. P.T.O.

Use simplex method to solve the following LPP:

K24P 3134

Maximize $Z = 5x_1 + 3x_2$

Subject to $x_1 + x_2 \le 12$

$$5x_{1} + 2x_{2} \le 10,$$

$$3x_{1} + 8x_{2} \le 12,$$

$$x_{1}, x_{2} \ge 0.$$

M3 M4 Capacity

F1	11	20	- 7	8	50
F2	21	16	10	12	40
F3	8	12	18	9	70
Requirement	30	25	35	40	-
11. Solve the follow	ving m	inimal	assig	nment	problen

27 19 58 9

	F	0.000				12000	1000
	В	43	78	72	50	63	48
	C	41	28	91	37	45	33
	D	74	42	27	49	39	32
10	E	36	11	57	22	25	18
	F	3	56	53	31	17	28
						18. No. 31	
							PART - C
A	nswer a	iny th	ree q	uestic	ons. E	ach q	uestion carries 13 marks

 $(3 \times 7 = 21)$

12. Solve the following LPP by dual simplex method :

Minimize $x_1 + 3x_2$ Subject to, $2x_1 + 3x_2 \le 30$, $x_1 + 2x_2 \ge 10$, x_1 , $x_2 \ge 0$. 13. Solve the following LPP by Cutting plane method :

Minimize 4x₁ + 5x₂ subject to, $3x_1 + x_2 \ge 2$, $x_1 + 4x_2 \ge 5$, $3x_1 + 2x_2 \ge 7$, x_1 , $x_2 \ge 0$.

state and prove the necessary and sufficient condition for the existence of b) Examine for saddle point and hence obtain the optimal strategies and the a saddle point (X_0, Y_0) of f(X, Y). value of the following game:

Firm A/Firm B

K24P 3134

-13 A1 12 4 2 -1 8 A2 12 14 6 8 16 A3 2 -4 11 1 A4

B2

-3-

B5

7

B4

6

14. a) Let f(X, Y) be such that both $\max \min f(X, Y)$ and $\min \max f(X, Y)$ exists. Then

15. Explain the Dominance property. The following table represents the pay off matrix with respect to Player A. Solve the game optimally using dominance property. **B**5 **B4 B**3 B2 **B1** A/B 6 10 5 6 4 A1 10 9 5 8 7 A2 9 10 11

- 9 8 A3 4 6 10 4 16. a) Define mathematical expectations on the pay off function E(X, Y) in the 6 game where Pay off matrix $A = (a_{\parallel})$.
- b) Consider the payoff matrix of the Player A as shown below, solve it optimally using graphical method. B5 B2 B3 B4 Player A/Player B B1 6 -6 _4 2 5 A1 -9 7 4 8 3 A2

(3×13=39)