Reg No:.....

Name :.....

K24FY 1603

First Semester FYUGP Mathematics Examination NOVEMBER 2024 (2024 Admission onwards) KU1DSCCMT112 (MATHEMATICAL STATISTICS 1)

(EXAM DATE: 6-12-2024)

Time: 120 min

Maximum Marks: 70

Part A (Answer any 6 questions. Each carries 3 marks)

- A coin is flipped 10 times. Let Y be the random variable representing the number of heads obtained. What is the probability of getting exactly 6 heads?
- 2. Define random variable . Give one example

3

- 3. If the cumulative distribution function of X is F(X), Find the cumulative distribution function of Y = aX
- 4. Define mathematical expectation of a random variable X when (i) X is discrete (ii) X is continuous.
- 5. Show that E(aX + b) = aE(X) + b

3

6. Var(X) = 0 implies P[X=E(X)]=1 .Comment

3

3

7. prove that

 $\mathbb{E}(X^{1/2}) \le [\mathbb{E}(X)]^{1/2}$.

Where X is a non negative random variable.

8. prove that

 $\mathbb{E}(X^2) \geq \frac{1}{\left\lceil \mathbb{E}\left(\frac{1}{Y}\right)\right\rceil^2}$

Where X is a positive random variable.

3

Part B (Answer any 4 questions. Each carries 6 marks)

- 9. A random variable X has F(x) as its distribution function and f(x) as the density function. Find the distribution and density functions of the random variable
 - (i) Y = tan X,
 - (ii) Y = cos X

6

- 10. Prove that the Mathematical Expectation of a sum of n random variables is equal to the sum of their Expectations, provided all the Expectations exist
- 11. Prove that the Mathematical Expectation of a product of a number of independent random variables is equal to the product of their Expectations

1

- 12. In lottery m tickets are drawn at a time out of n tickets numbered 1 to n.Find the expectation of the sum S of the numbers on the tickets drawn
- 13. Let the variate X have the following distribution

$$P(X=0)=P(X=2)=p, \quad P(X=1)=1-2p, \quad \text{for} \quad 0\leq p\leq \frac{1}{2}.$$
 . For what p is the $Var(X)$ maximum

6

- 14. Prove that
 - (i) $E[\log(X)] \le \log[E(X)]$ Where X is a non negative random variable.
 - (ii) $E(X)E\left(\frac{1}{X}\right) \ge 1$ Where X is a positive random variable.
 - (iii) $E(X^2)E\left(\frac{1}{X}\right) \ge E(X)$ Where X is a positive random variable.

Part C (Answer any 2 question(s). Each carries 14 marks) 15. For the following bivariate probability distribution of X and Y, find

- i $P(X \le 1, Y = 2)$
 - ii $P(X \leq 1)$
 - iii P(Y=3)
 - iv $P(Y \le 3)$
 - v $P(X < 3, Y \le 4)$

14

16. Let X be a continuous random variable with probability density function:

$$f(x) = \begin{cases} ax & \text{if } 0 \le x < 1, \\ a & \text{if } 1 \le x < 2, \\ -ax + 3a & \text{if } 2 \le x < 3, \\ 0 & \text{elsewhere.} \end{cases}$$

i Determine the constant a. ii Find $P(X \le 1.5)$.

17. A random variable X has the following probability distribution:

- (i) Find k. (ii) Evaluate P(X < 6), P(X = 6), (iii) P(0 < X < 5). (iv) If $P(X \ge c) > 1/2$, find the minimum value of c.
 - (v) Determine the distribution function of X.

2