Reg. No.:

Name :

Second Semester B.Sc. Degree (CBCSS - OBE-Regular/Supplementary/ Improvement) Examination, April 2024 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

2C02 MAT-ST: Mathematics for Statistics - II

Time: 3 Hours

Max. Marks: 40

SECTION - A

Answer any 4 from the following 5 questions. Each question carries 1 mark.

- 1. Given that $z = x^2 + y^2 + 2xy + 4x 3y + 8$. Find $\frac{\partial^2 z}{\partial y^2}$. Evaluate ∫ sin²x cos xdx.
- 3. Evaluate $\int_0^1 \int_0^1 x^2 y^2 dx dy$.
- 4. Give an example of diagonal matrix. State Euler's theorem for homogeneous functions.

 $(4 \times 1 = 4)$

SECTION - B

Answer any seven questions from the following 10 questions. Each question carries 2 marks. 6. Show that the function $u = \sin(x - ct)$ is a solution of $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.

- 7. Suppose z = xy, $x = t^2$, y = t. Find $\frac{dz}{dt}$.
- 8. Does the function $f(x, y) = \sin(xy) + x + y$ is continuous at the point (0, 0)?
- Justify your answer. 9. Find $\int_0^{\pi/2} \sin^3 x \, dx$.
- Evaluate ∫ tan² x sec⁴ x dx.

P.T.O.

3 marks.

K24U 1622

11. Use polar coordinates to evaluate the double integral $\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2+y^2) \, dy dx$

- 12. Use a double integral to find the area enclosed between the parabolas
- $y^2 = x$ and $x^2 = y$. 13. Find the spherical coordinate equation of the cone $z = \sqrt{x^2 + y^2}$.
- 14. Given that $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$. Show that $A^2 4A + 5I = 0$.
- 15. Find the eigenvalues of the matrix $\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$. SECTION - C

 $(7 \times 2 = 14)$

Answer any four questions from the following 7 questions. Each question carries

Show that a matrix and its transpose having the same eigenvalues. 17. State Cayley-Hamilton Theorem. Using Cayley-Hamilton Theorem, find the

- inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.
- 19. Evaluate ∫ tan4 xdx. 20. Given that $u = x^2 - y^2$. Show that $xu_x + yu_y = 2u$.

18. Find the length of the curve $f(x) = x^{3/2}$ from x = 0 to x = 1.

- 21. Find the domain and range of the function $f(x,y) = \frac{x^2 y^2}{x + y}$.

22. Evaluate ∫ sin⁴ x cos⁴ xdx.

 $(4 \times 3 = 12)$

SECTION - D

23. Use spherical coordinates to evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{2}^{\sqrt{4-x^2-y^2}} z^2 \sqrt{x^2+y^2+z^2} dz dy dx$

K24U 1622

24. Given that $u = \frac{x^2 + y^2}{x - v}$. Show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$. 25. Reduce the matrix $A = \begin{bmatrix} 3 & 4 \\ 0 & -2 \end{bmatrix}$ to the diagonal form.

26. Show that $\int \sec^n x dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx$.

Answer any two questions. Each question carries 5 marks.

 $(2 \times 5 = 10)$