Reg. No.:

Name :

Second Semester M.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2024 (2023 Admission) MATHEMATICS

MSMAT02C08: Advanced Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer five questions from this Part. Each question carries 4 marks.

 $(5 \times 4 = 20)$

Define pointwise convergence of a sequence of functions. For

$$m=1,\,2,\,...\,\,n=1,\,2,\,3,\,...\,\,let\,\,s_{m,\,\,n}=\,\,\frac{m}{m+n},\,\,Find\,\,\lim_{n\to\infty}\lim_{m\to\infty}s_{m,\,\,n}.$$

- Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 3. Let $E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. Prove that $E(z+w) = E(z) + E(w), z, w \in \mathbb{C}$.
- If f is continuous with period 2π and if ∈ > 0, prove that there is a trigonometric polynomial p such that |p(x) f(x)| < ∈ for all real x.
- 5. Define norm of a linear transformation. If A, B \in L(\mathbb{R}^n , \mathbb{R}^m), then prove that $||A+B|| \le ||A|| + ||B||$.
- 6. If f(0, 0) = 0 and $f(x, y) = \frac{xy}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$, find $D_1 f(0, 0)$ and $D_2 f(0, 0)$.

Answer three questions from this Part. Each question carries 7 marks. (3×7=21)

- State and prove Cauchy criterion for uniform convergence of a sequence of functions.
- Prove that there exists a real valued function on the real line which is nowhere differentiable.
 P.T.O.

K24P 1106

- If K is compact, f_n ∈ ∠ (K) for n = 1, 2, 3, and if {f_n} is pointwise bounded and equicontinuous on K, then prove that {f_n} contains a uniformly convergent subsequence.
- 10. Suppose $a_0, a_1, ..., a_n$, are complex numbers, $n \ge 1$, $a_n \ne 0$, $p(z) = \sum_{i=0}^{n} a_k z^k$. Then prove that p(z) = 0 for complex number z.
- Let X be a complex metric space and if φ is a contraction of X into X. Prove that there exists one and only one x ∈ X such that φ(x) = x.

PART - C

Answer three questions from this Part. Each question carries 13 marks. (3x13=39)

- 12. a) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t \to x} f_n(t) = A_n$, n = 1, 2, 3, ... Then prove that $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$.
 - Give an example of a series of continuous functions with a discontinuous sum.
- 13. Suppose $\{f_n\}$ is a sequence of functions differentiable on [a, b] and that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b] then prove that $\{f_n\}$ converges uniformly on [a, b] to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x), a \le x \le b$.
- 14. a) Define the following terms:
 - i) algebra.
 - ii) uniformly closed algebra.
 - iii) uniform closure of an algebra.
 - b) Let \$\mathbb{F}\$ be the uniform closure of an algebra \$\mathbb{F}\$ of bounded functions, then prove that \$\mathbb{F}\$ is a uniformly closed algebra.
- 15. State and prove Parseval's theorem.
- 16. State and prove inverse function theorem.