Reg. No.:....

Name :

V Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Regular/Supplementary/ Improvement) Examination, November 2024 (2019 to 2022 Admissions)

CORE COURSE IN MATHEMATICS 5B09 MAT: Vector Calculus

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions from this Part. Each question carries 1 mark. $(4 \times 1 = 4)$

- 1. Find parametric equations for the line through the origin and parallel to the vector 2j + k.
- 2. Examine the continuity of the vector valued function r(t) = (cost)i + (sint)j + tk.
- 3. Find $\frac{\partial w}{\partial x}$ if $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.
- State Divergence theorem.
- 5. Find the curl of the vector field $F(x, y) = (x^2 2y) i + (xy y^2)j$. PART - B

Answer any eight questions from this Part. Each question carries 2 marks. (8x2=16) 6. Find an equation for the plane through (2, 4, 5) and perpendicular to the line

- x = 5 + t, y = 1 + 3t, z = 4t. A particle moves so that its position vector is given by r(t) = cosωti + sinωtj
- where ω is a constant. Show that the velocity of the particle is perpendicular to r. 8. Find the arc length parameter along the helix r(t) = (cost)i + (sint)j + tk from $t_0 = 0$ to t.
- Find the curvature of the circle having radius a and centre at the origin.

P.T.O.

K24U 2754

10. Find the linearization of $f(x,y) = x^2 - xy + \frac{1}{2}y^2 + 12$ at the point (3, 2).

-2-

- 11. Find the directional derivative of $f(x,y) = x^2 + xy$ at the point (1, 2) in the direction
- of the unit vector $\mathbf{u} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$. 12. Find an equation for the tangent plane to the surface $2xz^2 - 3xy - 4x = 7$ at the
- point (1, -1, 2). 13. Find the work done by $F = (y - x^2)i + (z - y^2)j + (x - z^2)k$ over the curve
- $r(t) = ti + t^2j + t^3k$, $0 \le t \le 1$, from (0, 0, 0) to (1, 1, 1). 14. A fluid's velocity field is F = xi + zj + yk. Find the flow along the helix
- $r(t) = (\cos t)i + (\sin t)j + tk$, $0 \le t \le \pi/2$. Show that ydx + xdy + 4dz is exact.
- 16. Find a parametrization of the paraboloid $z = x^2 + y^2$, $z \le 4$.
- PART C Answer any four questions from this Part. Each question carries 4 marks. (4x4=16)

17. Determine whether the following two lines are parallel, intersect or are skew. If they intersect, find the point of intersection.

- $L_1: x = 1 + 4s, y = 1 + 2s, z = -3 + 4s, -\infty < s < \infty$ $L_2: x = 3 + 2r, \ y = 2 + r, \ z = -2 + 2r, -\infty < r < \infty$
- 18. Consider the function $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$. Find the directions in which i) f increases most rapidly at the point (1, 1) and

ii) f decreases most rapidly at the point (1, 1).

 $F = (2x - y + z) i + (x + y - z^{2}) j + (3x - 2y + 4z) k.$

- 19. Show that $F = (e^x \cos y + yz) i + (xz e^x \sin y)j + (xy + z)k$ is conservative and find a potential function for it.

20. Find the work done in moving a particle once round a circle C in the xy plane

where the circle has centre at the origin at radius 3, and the force field is given by

22. Find the surface area of a sphere of radius a.

Theorem. s

23. Evaluate $\iint (7xi - zk) \cdot nd\sigma$ over the sphere $S: x^2 + y^2 + z^2 = 4$ by the Divergence

K24U 2754

PART - D Answer any two questions from this Part. Each question carries 6 marks. (2×6=12)

25. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points

-3-

21. A slender metal arch, denser at the bottom than top, lies along the semicircle $y^2 + z^2 = 1$, $z \ge 0$, in the yz-plane. Find the center of the arch's mass if the

density at the point (x, y, z) on the arch is $\delta(x, y, z) = 2 - z$.

L1:
$$x = -1+t$$
, $y = 2+t$, $z = 1-t$, $-\infty < t < \infty$
L2: $x = 1-4s$, $y = 1+2s$, $z = 2-2s$, $-\infty < s < \infty$.

on the ellipse that lie closest to and farthest from the origin.

24. Find the plane determined by the intersection of the lines :

- 26. Verify Green's theorem in the plane for ∮(xydx + x²dy), where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x.
- 27. Use Stoke's theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F} = xz\mathbf{i} + xy\mathbf{j} + 3xz\mathbf{k}$ and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant traversed counterclockwise as viewed from above.