Reg. No.:

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2024 (2019 to 2022 Admissions) CORE COURSE IN MATHEMATICS

Na

5B07MAT : Abstract Algebra

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark.

- 1. Find the number of elements in the cyclic subgroup of \mathbb{Z}_{30} generated by 25.
- 2. Give an example of an infinite group that is not cyclic.
- 3. Define alternating group.
- 4. Let $\phi: S_n \to \mathbb{Z}_2$ defined by $\phi(\sigma) = \begin{cases} 0, & \text{if } \sigma \text{ is an even permutation} \\ 1, & \text{if } \sigma \text{ is an odd permutation} \end{cases}$ Compute ker o. Describe all units in the ring Q.

Answer any 8 questions from this Part. Each question carries 2 marks. (8×2=16) 6. Prove that identity element in a group G is unique.

PART - B

- 7. Describe all the elements in the cyclic subgroup of $GL(2, \mathbb{R})$ generated by
- Find the number of generators of a cyclic group having order 60.

K24U 2752

9. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ be a permutation in S_6 . Compute $|\langle \sigma \rangle|$.

-2-

- 10. Find all orbits of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 2 & 4 \end{pmatrix}$ in S_6 . Prove that every group of prime order is cyclic.
- 12. Let ϕ be a homomorphism of a group G into a group G'. Then prove that
- i) if e is the identity element in G, then $\phi(e)$ is the identity element e' in G'. ii) if $a \in G$, then $\phi(a^{-1}) = (\phi(a))^{-1}$.
- 13. Let G be a group, and let $g \in G$. Let $\phi_g : G \to G$ be defined by $\phi_g(x) = gxg^{-1}$ for $x \in G$. Prove that ϕ_g is a homomorphism.
- 14. State the fundamental homomorphism theorem. 15. Solve the equation $x^2 - 5x + 6 = 0$ in \mathbb{Z}_{12} .
- 16. Is every integral domain a field? Justify.
- PART C Answer any 4 questions from this Part. Each question carries 4 marks each. (4x4=16)

17. Prove that a subset H of a group G is a subgroup of G if and only if i) H is closed under the binary operation of G.

- ii) the identity element e of G is in H. iii) for all $a \in H$ it is true that $a^{-1} \in H$ also.
- State and prove division algorithm for Z.
- 19. Find all subgroups of \mathbb{Z}_{18} and draw the subgroup diagram for the subgroups. 20. Prove that every group is isomorphic to a group of permutations.
- 21. Let H be a subgroup of G. Let the relation \sim_L be defined on G by a \sim_L b if and only if $a^{-1} b \in H$. Prove that \sim_L is an equivalence relation on G.

23. Define subring. Let R be a ring and let a be a fixed element of R. Let $I_a = \{x \in R/ax = 0\}$. Show that I_a is a subring of R.

subgroup of G.

K24U 2752

PART - D Answer any 2 questions from this Part. Each question carries 6 marks. $(2 \times 6 = 12)$

24. a) Let G be a cyclic group with n elements generated by a. Let b ∈ G and let

-3-

22. Show that an intersection of normal subgroups of a group G is again a normal

- b = as. Prove that i) b generates a cyclic subgroup H of G containing n/d elements, where d is the greatest common divisors of n and s.
 - b) Find all generators of \mathbb{Z}_{12} .

ii) $\langle a^s \rangle = \langle a^t \rangle$ if and only if gcd (s, n) = gcd (t, n).

- b) Find all subgroups of D4 of order 2.
- 25. a) List the elements in the dihedral group D4.
- 26. a) Let H be a normal subgroup of G. Prove that the cosets of H form a group G/H under the binary operation (aH)(bH) = (ab)H.

b) Find the order of $5 + \langle 4 \rangle$ in $\mathbb{Z}_{12}/\langle 4 \rangle$.

27. Prove that $F = \left\{ a + b\sqrt{2} / a, b \in \mathbb{Q} \right\}$ with usual addition and multiplication forms a field.