Reg. No.: Name :

III Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2024 (2019 to 2023 Admissions) CORE COURSE IN MATHEMATICS

3B03 MAT: Analytic Geometry and Applications of Derivatives

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions. Each question carries 1 mark. 1. Find the focus of the parabola $y^2 = 10x$.

 $(4 \times 1 = 4)$

- 2. Write the equation of the tangent at the point (x, y) of the curve y = f(x).
- 3. Find the asymptote of the curve $r = a \tan \theta$. 4. State extreme value theorem.
- 5. Define critical point of a function.
- PART B

Answer any 8 questions. Each question carries 2 marks.

 $(8 \times 2 = 16)$

- 6. Find the center and vertices of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. 7. Find an equation of the hyperbola with eccentricity $\frac{3}{2}$ and directrix x = 2.
- 8. Find the subtangent of the curve $x = a \left(\cos t + \log \tan \frac{t}{2} \right)$, $y = a \sin t$.
- 9. Find the angle of intersection of curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 \cos \theta}$.

P.T.O.

10. Find the tangent to the curve $R(t) = (t^2 - 1)I + tJ$ at t = 1.

K24U 3431

- 11. Find ρ at the origin for the curve $y^4 + x^3 + a(x^2 + y^2) a^2y = 0$.
- 12. Find the asymptotes of the curve $x^3 + y^3 = 3axy$.
- 13. State Cauchy's mean value theorem.
- Using Maclaurin's series, expand tan x up to the term containing x⁵.
- 15. Find the absolute maximum and minimum values of $f(x) = x^2$ on [-2, 1].
- 16. Find the critical points of $f(x) = x^{4/3} 4x^{1/3}$.
- PART C

Answer any 4 questions. Each question carries 4 marks. 17. Show that the equation $x^2 - 4y^2 + 2x + 8y - 7 = 0$ represents a hyperbola.

-2-

Find its center, asymptotes and foci.

 $(4 \times 4 = 16)$

- 18. Find eccentricity of the ellipse $7x^2 + 16y^2 = 112$. Also find and graph the ellipse's foci and directrices. 19. Find the equation of the tangent at any point (x, y) to the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
- length. 20. For the cardioid $r = a(1 - \cos\theta)$, prove that i) $\phi = \frac{\theta}{2}$ ii) polar subtangent = $2a \sin^2 \frac{\theta}{2} \tan \frac{\theta}{2}$.

Show that the portion of the tangent intercepted between the axes is of constant

- 21. Find ρ at any point (r, θ) on the curve $r = a(1 \cos\theta)$.
- 22. Verify Rolle's theorem for $\frac{\sin x}{e^x}$ in $(0, \pi)$. 23. Find local and absolute extreme values of the function $g(t) = -t^2 - 3t + 3$.

24. The hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is shifted 2 units to the right.

i) Find the equation of the new hyperbola in standard form.

ii) Find the center, foci, vertices and asymptotes of the new hyperbola.

-3-

PART - D

 $(2 \times 6 = 12)$

K24U 3431

iii) Plot the new hyperbola.

Answer any 2 questions. Each question carries 6 marks.

- 25. Show that the conditions for the line x cos α + y sin α = p to touch the curve $\left(\frac{x}{a}\right)^m + \left(\frac{y}{b}\right)^m = 1$ is $(a\cos\alpha)^{m/m-1} + (b\sin\alpha)^{m/m-1} = p^{m/m-1}$.
- is three times the length of the perpendicular from the origin to the tangent at that point. 27. Sketch a graph of the function $f(x) = x^4 - 4x^3 + 10$.

26. Prove that the radius of curvature at any point of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$