K24U 4022

Reg. No.: Name :

First Semester B.Sc. Degree (C.B.C.S.S. - OBE-Supplementary/ Improvement) Examination, November 2024 (2019 to 2023 Admission) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

1C01 MAT - ST : Mathematics for Statistics - I

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any four questions from among the questions 1 to 5. Each question $(4 \times 1 = 4)$ carries one mark.

- 1. Find the nth derivative of cos(ax + b).
- State Lagrange's mean value theorem.
- 3. Prove that $\lim_{x\to 0} (x^n \log x) = 0, n > 0$.
- 4. If A is orthogonal, prove that $|A| = \pm 1$.
- n = 5i + 2j k. PART - B

5. Find an equation for the plane through P₀(-3, 0, 7) perpendicular to

Answer any seven questions from among the questions 6 to 15. Each question $(7 \times 2 = 14)$ carries 2 marks.

- 6. If $y = e^{ax} \sin bx$, prove that $y_2 2ay_1 + (a^2 + b^2)y = 0$.
- 7. Find the nth derivative of sin3 x cos2 x.
- 8. Verify Rolle's theorem for $\frac{\sin x}{c^x}$ in $(0, \pi)$.
- 9. Evaluate $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$

P.T.O.

K24U 4022

-2-

- 10. Using partition method, find the inverse of $A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \end{bmatrix}$. 11. Using Cramer's rule solve the following equations.
- x + y + z = 4, x y + z = 0, 2x + y + z = 5.

12. Are the vectors
$$x_1 = (3, 2, 7)$$
, $x_2 = (2, 4, 1)$ and $x_3 = (1, -2, 6)$ linearly dependent.

- If so find the relation between them. 13. Find the angle between the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5.
- 14. Find the length of the curve $r(t) = (1 + 2 \cos t)i + (2 \sin t)j + \sqrt{3} tk$ from $0 \le t \le \pi$.
- 15. Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction
- v = 3i 4j. PART - C

Answer any four questions from among the questions 16 to 22. Each question

 $(4 \times 3 = 12)$ carries three marks. 16. Find the nth derivative of $\frac{x}{(x-1)(2x+3)}$.

- 17. If $y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x$, prove that $(x^2 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 m^2)y_n = 0$.
- Using Maclaurin's series, expand tan x upto the term containing x5.
- 19. Expand $\log_e x$ in powers of (x 1).
- 20. Evaluate $\lim_{x\to 0} \frac{(1+x)^{\frac{x}{x}}-e}{x}$.
- 21. Reduce the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 2 & 2 & 7 \end{bmatrix}$ into its normal form and hence find its 22. Find the inverse transformation of $y_1 = x_1 + 2x_2 + 5x_3$, $y_2 = 2x_1 + 4x_2 + 11x_3$, $y_3 = -x_2 + 2x_3$.

Answer any two questions from among the questions 23 to 26. Each question carries five marks.

 $(2 \times 5 = 10)$

K24U 4022

State and prove Leibnitz's theorem.

-3-

PART - D

24. Prove that $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$, where 0 < a < b < 1. Hence deduce that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$.

25. Find the value of λ for which the equations.

$$(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$$
$$(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$$

are consistent, and find the ratios of
$$x : y : z$$
 when λ has the smallest of these values. What happens when λ has the greater of these values?

 $2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$

26. Find the curvature K and torsion T for the helix r(t) = (a cos t)i + (a sin t)j + btk, $a, b \ge 0, a^2 + b^2 \ne 0.$