Reg. No. :	
Name :	

Sixth Semester B.Sc. Degree (C.B.C.S.S. – Supplementary/One Time Mercy Chance) Examination, April 2024 (2014 to 2018 Admissions) CORE COURSE IN PHYSICS

6B14PHY : Electronics - II

Time: 3 Hours

Max. Marks: 40

Instruction: Write answers in English only.

SECTION - A

(Answer all - Very short answer type - Each question carries one mark.)

- The maximum efficiency for a practical class A amplifier is _____%.
- In Boolean algebra A + A = _
- The point where the dc load line intersects the I_R = 0 is called
- 4. For a transistor, the value of α is 0.9 then the value of β is

 $(4 \times 1 = 4)$

SECTION - B

(Answer any seven - Very short answer type - Each question carries two marks.)

- 5. What is the purpose of bypass capacitor in CE configuration?
- Describe the term feedback in amplifiers.
- 7. What is an Op-Amp?
- 8. Give the Barkhausen condition for getting sustained oscillations.
- Explain frequency response.
- 10. What is meant by the operating point?
- Sketch the circuit of a Wein bridge oscillator.

P.T.O.

K24U 0406

- 12. What are comparators?
- 13. Determine the values of A, B, C and D that make the product term A B C D = 1.
- Find the decibel gain of power gain 160.

 $(7 \times 2 = 14)$

SECTION - C

(Answer any four – Short essay/problem type – Each question carries three marks.)

- 15. Sketch the circuit of an OP-Amp differentiator. Write down the expression for the output.
- 16. The voltage gain of the amplifier without feedback is 200. If 10% negative feedback is employed, calculate the voltage gain with feedback.
- 17. What are the advantages of negative feedback?
- 18. Convert the Boolean expression to SOP from $\overline{(A + B)} + C =$
- 19. For a single stage transistor amplifier $R_C = 2 \text{ K}\Omega$ and input resistance $R_i = 1 \text{ K}\Omega$. If the current gain is 50, calculate the voltage gain.
- 20. Distinguish between Inverting and Non-inverting amplifiers using figures. $(4 \times 3 = 12)$

SECTION - D

(Answer any two - Long essay type - Each question carries five marks.)

- 21. State and prove Demorgan's theorems in Boolean algebra.
- 22. With a neat diagram explain the working of a Hartley oscillator and derive the expression for frequency.
- Draw the block diagram of a full adder and write down its truth table.
- 24. Use a Karnaugh map to minimize the following standard SOP expressions ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD.

 $(2 \times 5 = 10)$