

K24U 0936

Reg. No. :
Name
Name :

IV Semester B.Sc. Degree (C.B.C.S.S. - Supplementary/One Time Mercy Chance) Examination, April 2024 (2014 to 2018 Admissions) CORE COURSE IN PHYSICS

4B04 PHY - Optics

Time: 3 Hours Max. Marks: 40

Instruction: Write answers in English only.

SECTION - A

Answer all questions. Very short answer type. Each carries 1 mark.

- The refraction matrix is given by
- 2. The central point in Newton's rings seen in reflected light appears
- Resolving power of a grating __ _____, when the total number of lines on the grating increases.
- 4. Halfwave plate introduces a path difference of

 $(4 \times 1 = 4)$

SECTION - B

Answer any seven questions. Short answer type. Each carries 2 marks.

- 5. What are nodal planes?
- 6. What are the conditions to be satisfied for a non reflecting film?
- 7. Why a thick film cannot produce interference when illuminated with white light?
- 8. Explain why the centre of Newton's ring is dark for reflected light.
- 9. What is a phase reversal zone plate?
- 10. Give the expression for the position of the nth bright band due to a straight edge diffraction.

P.T.O.

K24U 0936

- 11. How are gratings prepared? 12. Define polarisation of light.
- Distinguish between e rays and o rays.
- 14. What is a positive crystal? Give two examples.
- SECTION C

 $(7 \times 2 = 14)$

Answer any four questions. Short essay/problem. Each carries 3 marks. 15. Derive the system matrix for two thin lenses having focal length f₁ and f₂

- separated by a distance d. 16. In a Newton's ring experiment, the radius of curvature of a lens is 5 m and its
- diameter is 2 cm. Calculate the total number of rings formed. Wavelength of the incident light is 5500 Å. 17. A single slit illuminated by red light of 6500 Å wavelength gives first order
- Fraunhofer diffraction minima that subtends an angle of 4.2° with the axis. How wide is the slit? 18. Calculate the size of the circular opening in an opaque screen which will transmit
- 10 Fresnel zones to a point 1m away. Given $\lambda = 6000 \text{ Å}$. 19. Show the graphical variation intensity of the Fresnel diffraction pattern of a straight edge.
- 20. Show that the reflected and refracted rays are at right angles to each other when rays are incident at polarising angle. $(4 \times 3 = 12)$
- SECTION D Answer any two questions. Long essay type. Each carries 5 marks. 21. Describe Michelson's interferometer. How will you determine the wavelength
 - of monochromatic light with the help of Michelson's interferometer?
- 22. Discuss the Fraunhofer diffraction due to a double slit in detail. 23. Explain with theory the production of circularly polarized and elliptically polarized
- light waves. 24. Set up the translation, refraction and system matrices for a thin lens and hence obtain lens makers formula and lens formula. $(2 \times 5 = 10)$