	 ¥-
Reg. No. :	
Name :	

Sixth Semester B.Sc. Degree (C.B.C.S.S. - OBE - Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2021 Admissions)

CORE COURSE IN PHYSICS 6B11PHY: Optics and Photonics

Time: 3 Hours

Max. Marks: 40

SECTION - A

(Short answer six questions. Answer all questions. Each carries 1 mark.) 1. When white light is used in Newton rings experiment, then all fringes are

- 2. In Fresnel diffraction, the incident wavefront is _____ 3. The intensity of the principal maxima for a grating of N slits is proportional to
- 4. Light is polarised to the maximum, when it is incident on a glass surface at an
- angle of incidence The technique by which image is obtained from a hologram is called as ____
- $(6 \times 1 = 6)$
- 6. LASER is a short form of ______

SECTION - B

(Short answer eight questions. Answer any six. Each carries 2 marks.)

- 7. What is fringe width? Given an expression for fringe width.
- 8. Explain the phenomena of colour of thin film.

P.T.O.

K24U 0071

THE REPORT OF A STATE OF THE ST

- 9. Why diffraction is common in sound but not common in light ? 10. Define resolving power of a grating.
- 11. How a quarter wave plate is constructed?
- 12. What is the importance of metastable state in the production of laser light ? 13. Distinguish between step index fibre and graded index fibre.
- 14. Explain the important properties of holograms.
- SECTION C

 $(6 \times 2 = 12)$

(Problem six questions. Answer any four. Each carries 3 marks.)

15. Two waves having intensities in the ratio 1:9. Find the ratio of the intensity

- 16. Find the half angular width of the central bright maximum in the Fraunhofer diffraction pattern of a slit of width 12×10^{-5} am when the slit is illuminated by
- monochromatic wavelength 6000 A. 17. What is the radius of first zone in a zone plate of focal length 20 cm for light of
- 18. Calculate the thickness of the doubly refracting crystal required to introduce a path difference of $\frac{\lambda}{2}$ between the ordinary and extra ordinary ray when λ = 6000 A, μ_0 = 1.55 and μ_e = 1.54.
- 19. A glass fibre is made with core glass of refractive index 1.55 and cladding is doped to give a refractive index 1.5. Calculate the numerical aperture, acceptance angle and the fractional index change.
- 20. In moving one mirror in a Michelson interferometer through a distance of 0.1474 mm, 500 fringes cross the centre of the field of view. What is the wavelength of light? $(4 \times 3 = 12)$

(Long essay four questions. Answer any two. Each carries 5 marks.) 21. Describe the experimental setup for producing Newton's rings by reflected light.

light.

-3-

SECTION - D

Explain how this method is used to measure the wavelength of monochromatic

K24U 0071

- 22. Explain the Fresnel diffraction by a circular aperture. 23. How can plane polarized light be produced by reflection? State Brewster's law. Show that reflected and refracted rays are at right angles during polarization by reflection.
- 24. What are Einstein's coefficients? Derive a relation between them.

 $(2 \times 5 = 10)$