

Reg. No. :	
Nama :	

I Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/
Improvement) Examination, November 2023
(2019 Admission Onwards)

COMPLEMENTARY ELECTIVE COURSE IN PHYSICS
1C01 PHY: Mechanics

Time: 3 Hours

Max. Marks: 32

SECTION - A

(All questions are compulsory, each carries 1 mark.)

- 1. In simple harmonic motion the displacement of a particle in one time period is
- 2. Moment of inertia × Angular velocity equal to _____
- 3. Write down the expression for excess pressure inside a liquid drop.
- 4. What is flexural rigidity?
- 5. Write down the differential equation for wave motion.

 $(5 \times 1 = 5)$

SECTION - B

(Answer any 4 questions, each carries 2 marks.)

- Define Poisson's ratio.
- 7. Define quality factor associated with damped harmonic oscillator.
- 8. What is surface energy?
- 9. Draw the energy diagram of simple harmonic motion.
- 10. Define torque. Write the relation between torque and angular momentum.
- 11. What is critical velocity? Write the expression for it.

 $(4 \times 2 = 8)$

P.T.O.

K23U 4081

SECTION - C

(Answer any 3 questions, each carries 3 marks.)

- 12. Given a 2 m length of steel wire with 1 mm diameter, how much will the wire stretch under a 5 kg load ? (Given Y of steel = 20 x 10¹⁰ Pa)
- 13. A metal plate 5 cm \times 5 cm rests on the layer of castor oil 1 mm thick whose coefficient of viscosity is 1.55 Nsm $^{-2}$. Find the horizontal force required to move plate with a speed of 2 cm/s.
- 14. A particle describes simple harmonic vibrations in a line 4 cm long. Its velocity when it passes through the centre of line is 12 cm per second. Find the period of vibration.
- 15. A circular metal hoop of mass 1 kg and radius 0.2 meter makes 10 revolutions per second about its centre. The axes of rotation being normal to the plane of the hoop.
 - a) What is the moment of inertia about the axis?
 - b) What is the angular momentum about the same axis?
- Calculate the frequency, period and wave number of light waves of wavelength
 5000 Å.

 (3×3=9)

SECTION - D

(Answer any 2 questions, each carries 5 marks.)

- 17. Derive an expression for bending moment of a beam.
- State the theorems on moment of inertia. Hence derive an expression for moment of inertia of thin rod and circular disc.
- Set up the differential equation for simple harmonic motion and obtain the expression for displacement.
- 20. Derive an expression for the velocity of a transverse wave in stretched string.

(2×5=10)