

Reg. No. :

K23U 0527

Name :

VI Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2023 (2019 and 2020 Admissions) Core Course in Physics

6B12 PHY - NUCLEAR, PARTICLE AND ASTROPHYSICS

Time: 3 Hours

Max. Marks: 40

SECTION - A

Answer all questions. Each carries 1 mark.

- 1. Give the dimension and unit of nuclear cross section.
- A star at a distance of 100 parsec has a parallax of _____ arcseconds. Particles with integral spin are called _____
- 4. Quark model of neutron is ____
- 5. Which nucleus has highest binding energy per nucleon? Give an example for strong force.
- SECTION B

 $(6 \times 1 = 6)$

Answer any six questions. Each carries 2 marks.

- 7. What is meant by the Astronomical Unit? Which are the most commonly used units of stellar distance? 8. Briefly explain Wein's displacement law.
- What are resonant particles? Give example.

P.T.O.

10. What are called white dwarfs?

K23U 0527

-2-

- 11. What are called main sequence stars? Give example.
- 12. Write a short note on the inertial confinement in fusion reactor.
- 13. What is meant by neutron activation analysis? Give its application.
- SECTION C

14. Which are conservation laws in radioactive decay?

 $(6 \times 2 = 12)$

Answer any four questions. Each carries 3 marks.

15. Find the kinetic energy of the alpha particle emitted in the alpha decay process $Ra^{226} \rightarrow Rn^{222} + He^4$.

a) What is the decay constant of 198Au?

- Mass of $Ra^{226} = 226.025410$, Mass of $Rn^{222} = 222.017578$, Mass of $He^4 = 4.002603$ 16. The half-life of 198 Au is 2.70 days.
- b) What is the probability that any 198Au nucleus will decay in one second? 17. Fill the missing particle in the following reactions:
 - a) ${}^{4}\text{He} + {}^{14}\text{N} \rightarrow {}^{17}\text{O} + \underline{\hspace{1cm}}$ b) ${}^{9}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \underline{\hspace{1cm}}$
- c) $^{27}AI + ^{4}He \rightarrow ^{1}n + ____$ 18. Sirius A has a magnitude of - 1.44, while the Sun has a magnitude of - 26.8.

Find the ratio of their brightness.

19. Star 1 is at half the distance of Star 2 and appears twice as bright. Compare their luminosities.

Answer any two questions. Each carries 5 marks.

20. Find the total binding energy and also the average binding energy per nucleon for the nucleus $^{40}_{20}$ Ca. Atomic mass of Ca = 39.962589u, mass of $(4 \times 3 = 12)$ neutron = 1.008665u, mass of proton = 1.007825u.

21. Explain how stars are grouped in Hertzprung Russel diagram. Discuss the mass variation of main sequence stars.

22. With the help of a neat diagram, explain the parts of a nuclear fission reactor. How is it used for the production of electrical power?

SECTION - D

23. Explain the Quark model of mesons and baryons with examples. 24. What is the binding energy curve? Explain nuclear fission and nuclear fusion $(2 \times 5 = 10)$ on the basis of binding energy curve.