

Reg.	No.	:
Name		

V Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, November 2022 (2016 -18 Admissions) CORE COURSE IN PHYSICS

5B06PHY - Electrodynamics - I

Time: 3 Hours

Max. Marks: 40

Instructions: 1) Section A: Answer all questions. (Very short answer type. Each guestion carries 1 mark.)

2) Section B: Answer any seven questions. (Short answer

type. Each question carries 2 marks.)

3) Section C: Answer any four questions. (Short essay/ problem type. Each question carries 3 marks.)

4) Section D: Answer any two questions. (Long essay type. Each question carries five marks.)

SECTION - A

- 1 Write down Gauss law in differential form.
- 2. The ratio of the polarization to $\epsilon_{_{\Omega}}$ times the electric field is called _
- 3. What is the strength of the electric field inside a charged conducting solid sphere?
- 4. If the strength of the magnetic field at a point r near a long straight currentcarrying wire is B. The value of the field at a distance r/2 will be _____. (4×1=4)

SECTION - B

- Write down Laplace equation in Cartesian co-ordinate system.
- 6. What are the boundary conditions of B and H?
- 7. Show that $\nabla^2 A = \mu_0 J$, where A is the magnetic vector potential.
- Briefly explain dielectric polarization.

K22U 1973

- Write down any two properties of electric conductors.
- 10. State and explain Biot-Savart law.
- 11. What are polar and non polar molecules with examples?
- Show that the divergence of a vector field is a scalar point function.
- 13. What is the work done to move a charge in an electric field?
- 14. Derive electric field at any point as the negative of the gradient of potential at that point. $(7 \times 2 = 14)$

SECTION - C

- 15. A sphere of radius 0.1 m is charged with 10⁻⁸ Coulomb of charge. Find the potential and electric field at any internal point.
- 16. If $F = x^3y \hat{i} 4y^2z^2 \hat{j} + xy^3z \hat{k}$, find ∇ . F at (1, -1, 1).
- 17. A solenoid consisting of 400 turns is wound on a former of radius 5 cm and length 50 cm. What is the value of magnetic flux density at (a) the midpoint of the solenoid, (b) at the end, when a current of 2 mA flows through it?
- 18. Compute the magnetic field of a long straight wire that has a circular loop with a radius of 0.05 m. The current of 2A is flowing through this closed loop.
- 19. Find the electric field at an external point P outside the uniformly charged spherical conductor at a distance r from the centre.
- 20. Obtain the expression for the energy due to continuous charge distribution.

 $(4 \times 3 = 12)$

 $(2 \times 5 = 10)$

SECTION - D

- 21. Using Gauss law, obtain the electric field due to spherically symmetric charge distribution.
- 22. State and explain Ampere's circuital law. Determine the magnetic field B for
- 23. Obtain the expression for the potential energy of a point charge distribution.
- Explain Clausius Messotti equation.

long solenoid of length *l*, carrying current *l*.