I Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/
Improvement) Examination, November 2022
(2019 Admission Onwards)
COMPLEMENTARY ELECTIVE COURSE IN PHYSICS
1C01PHY: Mechanics

Time: 3 Hours

Max. Marks : 32

SECTION - A

Answer all questions, each carries 1 mark.

- 1. State Hooke's law of elasticity.
- The moment of inertia of a ring about an axis perpendicular to the plane passing through the center of gravity is MR². Its radius of gyration about a parallel axis at a distance, 2R from the first axis is
- 3. The differential equation of a damped harmonic oscillator is _____
- How a roaring sea can be made calm? (Explain using the concept of surface tension.)
- 5. Unit of intensity of a wave is

 $(5 \times 1 = 5)$

SECTION - B

Answer any 4 questions, each carries 2 marks.

- 6. What is Elastic Hysteresis ?
- 7. Explain the excess of pressure of the curved surfaces of a liquid.
- 8. Why two streamlines cannot cross each other?
- 9. State and prove parallel axes theorem.

P.T.O.

K22U 3429

- 10. Distinguish between free oscillation and damped oscillation.
- Prove that equation of plane progressive harmonic wave is periodic in x and t.

(4×2=8)

SECTION - C

Answer any 3 questions, each carries 3 marks.

- Find the work done in twisting a steel wire of radius 10⁻³ m and length 0.25 m through an angle of 45°. Given the rigidity modulus n = 8 x 10¹⁰ Nm⁻².
- 13. Calculate the work done in spraying a spherical drop of mercury of radius 10⁻³ m into a million drops of equal size. Surface tension of mercury is 0.465 Nm⁻¹.
- 14. A uniform thin bar of mass 3 kg and length 0.9 m is bent to make an equilateral triangle. Calculate the moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of the triangle.
- 15. A simple harmonic motion is represented by $x = 2\sin\left(t + \frac{\pi}{3}\right)$. Find the maximum acceleration and maximum velocity.
- 16. Plane harmonic waves of frequency 500 Hz are produced in air with amplitude 1×10^{-3} cm. Find the pressure amplitude, energy density and energy flux of the wave. V = 340 ms⁻¹ and ρ = 1.29 kgm⁻³. (3×3=9)

SECTION - D

Answer any 2 questions, each carries 5 marks.

- Derive Poiseuille's equation and mention the method of determining the coefficient of viscosity.
- 18. Derive an expression for moment of inertia of solid sphere about the diameter.
- Derive the differential equation for a damped harmonic oscillator and explain the conditions for underdamped harmonic oscillations.
- Define plane progressive harmonic wave. Derive the expression for energy density and intensity of a progressive wave.