THE RESIDENCE OF THE PARTY OF T

Reg. No.:

Name :

V Semester B.Sc. Degree (C.B.C.S.S. – Supplementary) Examination, November 2023 (2017 and 2018 Admissions) CORE COURSE IN PHYSICS

5B07PHY: Thermal Physics

Max. Marks: 40

Time: 3 Hours

Instruction: Write answers in English only.

SECTION - A

(Answer all the questions - Very short answer type - Each carries 1 mark). (4×1=4)

- 1. The first law of thermodynamics is the law of conservation of
- 2. According to Maxwell Boltzmann distribution particles are
- 3. During an irreversible process the entropy of the system
- 4. The minimum volume of a phase cell is of the order of

SECTION - B

 $(7 \times 2 = 14)$ (Answer any 7 questions - Short answer type - Each carries 2 marks).

- Explain the term internal energy.
- Define coefficient of performance of a refrigerator.
- 7. Name the four thermodynamic potentials.
- State law of equipartition of energy.
- 9. Define thermodynamic equilibrium.
- 10. Distinguish between intensive and extensive parameters. Give examples.
- 11. Write down any four postulates of kinetic theory of ideal gas.

P.T.O.

K23U 2837

- 12. Explain second law of thermodynamics.
- 13. What is meant by Gibb's function? Give its mathematical expression.
- 14. Define reversible process. What are the conditions under which a process is reversible?

SECTION - C

(Answer any 4 questions – Short essay/problem type – Each carries 3 marks). (4×3=12)

- 15. The temperature inside and outside a refrigerator are 273 K and 303 K respectively. Assuming that the refrigerator cycle is reversible calculate the heat delivered to the surroundings for every joule of work done.
- 16. A Carnot engine is working between 300°C and 1000°C. Calculate the increase in efficiency if temperature of the source is raised by 200°C.
- 17. Considering one mole of a perfect gas undergoing reversible isothermal change calculate the change in entropy.
- 18. Calculate the rate at which energy is radiated per unit area of a black body at 500 K. Given Stefan's constant $\sigma = 5.67 \times 10^{-8}$ W/m⁻²K⁻⁴.
- 19. Calculate the increase of entropy when 1g of water is heated for 0° C to 100°C. Given specific heat capacity of water = 4200 JKg⁻¹K⁻¹.
- 20. One mole of a gas at 92°C expands isothermally until its volume is doubled. Calculate the work done.

SECTION - D

(Answer any 2 questions - Long essay type - Each carries 5 marks).

 $(2 \times 5 = 10)$

- 21. Explain briefly black body radiation and Planck radiation law.
- 22. What is T-S diagram? Derive the expression for efficiency of a Carnot engine using T-S diagram of Carnot cycle.
- 23. Explain the principle of a two stroke engine.
- 24. What is an isothermal process? Derive the expression for work done in an isothermal process.