ysics 9

K23U 2376

Reg. No. :	
	*
Name :	***************

V Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2023 (2019-2021 Admissions)

CORE COURSE IN PHYSICS

5B08PHY: Thermodynamics and Statistical Mechanics

Time: 3 Hours

Max. Marks: 40

PART - A

(Short answer questions. Answer all questions. Each carries 1 mark.)

- Give the Rankine and Fahrenhelt temperature corresponding to 373.15 K.
- A quasi static isothermal expansion of ideal N₂ gas enclosed in a cylinder fitted with a frictionless movable piston is a reversible process or not ? Why ?
- State the significance and limitations of first law of thermodynamics.
- 4. What are the merits of a diesel engine?
- State the physical sense of Helmholtz free energy.
- Define RMS speed of molecules.

 $(6 \times 1 = 6)$

PART - B

(Short essay questions. Answer any six questions. Each carries 2 marks.)

7. State and explain Zeroth law of thermodynamics with one fundamental application.

P.T.O.

K23U 2376

- 8. The pressure on 300 gm of copper is increased quasistatically and isothermally from 0 to 500 atm at 300K. (Take the density $\dot{\rho} = 8.96 \times 10^3 \frac{\text{kg}}{-10^3}$ and isothermal compressibility, $k = 6.18 \times 10^{-12} Pa^{-1}$). How much work is done during compression?
- Explain molar heat capacity at constant volume and prove that dU = C_vdT. 10. a) Define coefficient of thermal conductivity
- b) Prove that $C_p C_v = R$ for one mole of an ideal gas using the first law of
- thermodynamics 11. Explain Carnot's theorem.
- 12. State Kelvin-Planck statement of second law of thermodynamics. Can we
- propel a ship across ocean by utilizing the internal energy of the ocean? 13. Explain the term 'entropy'. How will you relate entropy and disorder for a system
- which is making a transition from ferromagnetic to paramagnetic behaviour? 14. Distinguish between bosons and fermions. $(6 \times 2 = 12)$
- PART C (Problems. Answer any four questions. Each carries 3 marks.)

15. Compute the bulk modulus of petrol from the following data. Initial volume = 200 liters, Pressure change = 100 atm and final volume = 201 liters.

- 16. A tyre filled with Nitrogen gas at a pressure of 1 atm is compressed to (1/10)th of its volume
- a) Very slowly b) Suddenly. Find the pressure difference of the compressed air between the two cases.
- Obtain the value of Stefan's constant if the temperature of the filament of a 25 W lamp is 2000°C and the effective area of the filament is 0.60 × 10⁻⁴m². The relative emittance of the filament is 0.29.

gm. Specific heat of water = 1 cal/gm°C].

point is converted into water by heating to 283K. [Latent heat of ice = 80 cal/

18. Calculate the change in entropy in MKS system when 10 kg of ice at its melting

19. Calculate under what pressure ice freezes at 270 K if the change in specific

K23U 2376

- volume when 1 kg of water freezes is 80 × 10-6m3. Given the latent heat of ice = 3.36×10^5 J/kg. 20. In how many ways can two particles be distributed in five quantum states. The particles are indistinguishable following B-E statistics.
- $(4 \times 3 = 12)$ PART - D (Long Essay. Answer any two questions, Each carries 5 marks.)
- 21. Deduce thermodynamic potentials and derive Maxwell's relation. Describe Carnot engine and obtain expression for its efficiency.
- 23. Explain with examples
 - a) Reversible and irreversible process. b) Quasistatic process.
- c) Intensive and extensive variables. d) Thermodynamic equilibrium.
- 24. Derive Maxwell-Boltzmann distribution law.

 $(2 \times 5 = 10)$