First Semester FYUGP Physics Examination NOVEMBER 2024 (2024 Admission onwards) KU1DSCPHY112 (BASIC MECHANICS)

(DATE OF EXAM: 4-12-2024)

Fime: 90 min	Maximum Marks : 5
Part A (Answer any 6 questions. E	
1. Define force and give its SI unit.	
2. How is the net force on an object relat	ed to its acceleration?
3. List the four fundamental forces of nat	ure.
4. Write the expression for centripetal for	ce and explain its significance.
5. What is the difference between kinetic ample each?	energy and potential energy Give one ex-
6. Explain how moment of inertia is comp	outed for a solid disc.
7. Define a black hole in simple terms.	2
8. How does the gravitational force affect	the motion of planets around the sun? 2
Part B (Answer any 4 questions. I	Each carries 6 marks)
 Draw and analyze a free-body diagram of friction. Calculate the net force acting block down the plane. 	of a block on an inclined plane, considering on the block and the acceleration of the 6
 A cyclist goes around a circular track v of 12 m/s. Calculate the centripetal ac- cyclist if their mass is 70 kg. 	vith a radius of 50 m at a constant spece celeration and the net force acting on the 6
11. Based on a block sliding on a frictionles	s table highlight work energy theorem 6
 Calculate the angular momentum of a radius 2 m at a speed of 6 m/s. 	1.5 kg mass moving in a circular path of 6
 Calculate the gravitational potential en Discuss how this energy relates to its kin 	ergy of a satellite in orbit around Earth. netic energy and orbital speed. 6
4. Using Kepler's Third Law, calculate the	orbital period of a satellite that is 12,000

Part C (Answer any 1 question(s). Each carries 14 marks)

- 15. (a) Explain the conservation of angular momentum of a skater performing a spin. Describe how the skater's moment of inertia changes as they pull in their arms and analyze its effect on rotational speed.
 - (b) Apply the work-energy theorem to calculate the work done by a variable force acting on an object. How does this relate to the object's kinetic energy? 7
- 16. Apply the concepts of angular velocity and acceleration to analyze a spinning wheel. Calculate the angular momentum and kinetic energy of the wheel given its moment of inertia.