5KA

K23U 0475

Reg.	No.	*	***************************************
Non			

VI Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/
Improvement) Examination, April 2023
(2019 and 2020 Admissions)

CORE COURSE IN CHEMISTRY/POLYMER CHEMISTRY
6B15 CHE/PCH: Physical Chemistry – III

Time: 3 Hours

Max. Marks: 40

SECTION - A

(Very short answer type. Each carries 1 mark. Answer all 4 questions.)

- 1. Define molar conductance.
- 2. What is meant by buffer index?
- 3. What is liquid junction potential?
- 4. Define the term quantum yield.

 $(4 \times 1 = 4)$

SECTION - B

(Answer any 7 questions. Each question carries 2 marks.)

- Calculate the ionic strength of a solution containing 0.2 M NaCl and 0.2 M BaCl₂.
- Define wein effect and debye-falkenhagen effect.
- 7. Write any two applications of buffer.
- Calculate the ionization constant of NH₄OH at 25°C if it is 1% ionized in 0.18 M solution at 25°C.
- 9. What is Weston Cadmium cell?
- Write Ilkovic equation and explain the terms involved.

P.T.O.

K23U 0475

- Distinguish between order and molecularity.
- Explain pseudo first order reaction with an example.
- 13. The rate constant for a first order reaction is 1.54×10^{-3} s⁻¹. Calculate its half life time.
- 14. Explain Beer-Lambert law.

(7×2=14)

SECTION - C

(Answer any 4 questions. Each question carries 3 marks.)

- Discuss the conductometric titration curves obtained in the titration of (a) Strong acid with a strong base and (b) Strong acid with a weak base.
- What is meant by buffer solution? Derive Henderson's equation for the pH of an acidic buffer.
- 17. What are concentration cells? How are they classified?
- Write a note on hydrogen-oxygen fuel cell.
- Differentiate between homogeneous and heterogeneous catalysis with examples.
- Write a note on colorimetry.

 $(4 \times 3 = 12)$

SECTION - D

(Answer any 2 questions. Each question carries 5 marks).

- Explain the Kohlrausch's law and its applications.
- 22. a) Discuss the construction and working of calomel electrode.b) The standard EMF of the Daniel cell involving the cell reaction.
 - $Zn(s) + Cu^{2+}$ (aq) $\rightarrow Zn^{2+}$ (aq) + Cu(s), is 1.10 volts. Calculate the equilibrium constant of the cell reaction at 25°C.
- Describe briefly any 2 types of electrodes which can be used for determining pH of a solution. Discuss their merits and demerits.
- 24. Discuss the kinetics of unimolecular surface reactions.

(2×5=10)