Reg. No. :	
	deline - was a second
Name :	

II Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS

MAT 2C08: Advanced Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Let $X = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$.
 - a) Define a topology \mathcal{T}_1 on X such that (X, \mathcal{T}_1) is a compact space. Justify your
 - b) Define a topology \mathcal{T}_2 on X such that (X, \mathcal{T}_2) is not compact space. Justify your answer.
- Prove or disprove : Every compact subset of a topological space is closed.
- Prove that complete regularity is a topological property.
- 4. Give an example of Lindeloff space which is not compact.
- 5. Define Hilbert cube. Prove that a Hilbert cube is metrizable.
- Prove that a normed space is completely regular.

P.T.O.

K23P 0500

PART - B

-2-

Answer any 4 questions without omitting any Unit. Each question carries 16 marks. Unit - I

- 7. a) Let (X, \mathcal{T}) be a T_1 space. Prove that X is a countably compact if and only if it has the Bollzano-Weierstrass property.
- b) Show that the condition that X is a T, space in part (a) is necessary. Justify 8. Prove that the product of any finite number of compact spaces is compact.
- 9. a) Prove or disprove : Local compactness is a topological property.
- - b) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
 - c) Give an example of a metric space which is locally compact but not sequentially compact.

Unit - II

- a) Prove that every finite set in a T₁ space is closed. b) Prove that every second countable space is Lindeloff.
 - c) Is the converse of part (b) true ? Justify your claim.
- 11. a) Define a completely normal topological space. Prove that a T_1 space
- (X, T) is completely normal iff every subspace of X is normal. b) Prove that every second countable regular space is normal.
- 12. a) Let $\{(\mathbf{x}_{\alpha},\,\mathcal{T}_{\alpha}):\alpha\in\Lambda\}$ be a family of topological spaces and let $\mathbf{X}=\prod_{\alpha\in\Lambda}\mathbf{X}_{\alpha}$. Prove that X is completely regular iff (X_{α}, T_{α}) is completely regular for each
- b) Let (X, \mathcal{T}) be a topological space with a dense subset D and a closed, relatively discrete subset C such that $P(D) \leq C$. Then prove that (X, \mathcal{T}) is not normal.
 - c) Give an example of a Lindeloff space that is not separable. Justify your