

K23U 3431

Reg. No.:

Name :

III Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Regular/Supplementary/ Improvement) Examination, November 2023 (2019 to 2022 Admissions) CORE COURSE IN MATHEMATICS

3B03MAT : Analytic Geometry and Applications of Derivatives

Time: 3 Hours Max. Marks: 48

Answer any 4 questions. Each question carries one mark.

- 1. State Rolle's Theorem.
- 2. Find the focus and directrix of the parabola $y^2 = 12x$.
- 3. Find the asymptotes of the spiral $r = \frac{a}{a}$. 4. Find the equation of the tangent at any point (x, y) to the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
- 5. Find the asymptotes of the curve $x^2y^2 x^2y xy^2 + x + y + 1 = 0$ parallel to the
- x-axis.

Answer any 8 questions. Each question carries two marks.

6. Determine all the critical points of the function $f(x) = 6x^2 - x^3$.

- 7. Find the directrix of the hyperbola $r = \frac{1}{2}$
- 8. Find the asymptote of the curve $r = a \tan \theta$.
- 9. Using Maclaurin's series, expand tan x upto the term containing x5.
- 10. Find the angle of intersection of the curves $r = \sin\theta + \cos\theta$ and $r = 2 \sin\theta$.

P.T.O.

11. Find lim secx 1+tanx.

K23U 3431

- 12. For the cardioid $r = a(1 \cos \theta)$, prove that $\phi = \theta/2$.
- 13. For the curve $x = a(\cos t + \log \tan t/2)$, $y = a \sin t$, prove that the portion of the tangent between the curve and the x-axis is constant.
- 14. Find the intervals in which the function $f(x) = x^3 12x 5$ is increasing and the intervals on which f is decreasing.

-2-

- 15. Show that the equation $x^2 4y^2 + 2x + 8y 7 = 0$ represents a hyperbola. 16. Find the absolute maximum and minimum value of $f(x) = \frac{2}{3}x - 5$ on [-2, 3].
- PART C

17. Verify Rolle's theorem for $f(x) = (x + 2)^3 (x - 3)^4$ in (-2, 3).

18. a) Find the focus and directrix of the parabola $x^2 = 6y$. b) Express the equation of the ellipse $16x^2 + 25y^2 = 400$ in the standard form.

Answer any four questions. Each question carries four marks.

19. Find the asymptotes of the curve $x^3 + 3x^2y - 4y^3 - x + y + 3 = 0$.

22. a) Find the critical points of $f(x) = x^{1/3} (x - 4)$.

- 20. Find the angle of intersection of the curves $x^2 = 4y$ and $y^2 = 4x$. 21. Find the radius of curvature at the point (3a/2, 3a/2) of the folium $x^3 + y^3 = 3axy$
- on the curve $xy^2 = a^3 x^3$.

focus at (3, 0) and the line x = 1 as the corresponding directrix.

b) Find the intervals in which the function f defined is increasing and decreasing.

23. Find a cartesian equation for the hyperbola centered at the origin that has a

 $y = a(\sin \theta - \theta \cos \theta)$. Verify that these normals touch a circle with its center at the origin and whose radius is constant.

 $(\pm 2, 0).$

24. Find the equation of the normal at any point θ to the curve $x = a(\cos \theta + \theta \sin \theta)$.

PART - D

25. a) Find the critical points of $f(x) = x^4 - 4x^3 + 10$. b) Find the intervals in which f defined is increasing and decreasing.

- Find the intervals where the graph of f is concave up and concave down. d) Sketch the general shape of f. =1 is shifted 4 units to the right and 3 units up. Find 26. a) The ellipse
 - the equation of the new ellipse in standard form. b) Find the foci, vertices and center of the new ellipse.

Answer any two questions. Each question carries six marks.

- c) Plot the new ellipse mentioned in a) part. d) Find the ellipse's equation in standard form with foci $(\pm \sqrt{2}, 0)$ and vertices
- 27. Show that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ is $4a \cos \theta/2$.