Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS

4B04 MAT: Number Theory and Applications of Integrals

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four out of five questions. Each question carries 1 mark.

- 1. Define a prime number.
- 2. State Euclidian lemma.
- 3. When we can say that the existence of solution Diophantine equation of the form ax + by = c? 4. State Wilson's theorem.
- 5. Show that for any integers a, n, a = a(modn).

 $(4 \times 1 = 4)$

(Short Essay Type)

PART - B

Answer any eight out of eleven questions. Each question carries 2 marks. 6. If a|b, then show that a|bc, for any integer c.

- 7. Find gcd(24, 138) using Euclidian algorithm.
- 8. Show that, if p is a prime and plab, then pla or plb. 9. If $a = b \pmod{n}$, prove that gcd(a, n) = gcd(b, n).

P.T.O.

10. State Fermat's little theorem.

K23U 1126

-2-

 $(8 \times 2 = 16)$

 $(4 \times 4 = 16)$

- 11. Evaluate $\int 3x^2 \sqrt{x^3 + 1} dx$.
- 12. Find the area of the region bounded above by y = x + 6 bounded below by
- $y = x^2$, and bounded on the sides by the lines x = 0 and x = 2. 13. Define volume problem.
- 14. Find the volume of the solid that is obtained when the region under the curve
- $y = \sqrt{x}$, over the interval [1, 4] is revolved about x-axis. 15. Find the arc length of the spiral $r = e^{\theta}$ between $\theta = 0$ and $\theta = 2 + \pi$.
- 16. Find the area of the surface generated by y = 7x, $0 \le x \le 1$, revolving about x-axis.
- PART C (Essay Type)

Answer any four out of seven questions. Each question carries 4 marks. 17. Solve the Diophantine equation 172x + 20y = 1000.

18. Express 6 as a linear combination of 12378 and 3054.

- 19. Find 2340 (mod 341).
- 20. Find the area of the region enclosed by $x = y^2$ and y = x 2. 21. Find the area of the region enclosed by the rose curve $r = \cos 2\theta$.
- 22. Find the arc length of the curve $y = x^{\frac{3}{2}}$, from (1,1) to (2, $2\sqrt{2}$). 23. Find the area of the surface that is generated by revolving the portion of the

curve $y = x^3$ between x = 0 and x = 1 about the x-axis.

Answer any two out of four questions. Each question carries 6 marks. 24. Let x_0 , y_0 is any particular solution of the Diophantine equation of the form

 $(2 \times 6 = 12)$

K23U 1126

ax + by = c, then show that all other solutions can be represented by $x = x_0 + \left(\frac{b}{d}\right)t$, $y = y_0 + \left(\frac{a}{d}\right)t$, where d = gcd(a, b).

-3-

PART - D (Long Essay Type)

26. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, using integration. 27. Find the volume of the solid generated when the region under $y = x^2$ over the interval [0, 2] is revolved about the line y = -1.

25. Use Euler's theorem, evaluate 2100000 (mod 77).