Reg. No.:

Name :

VI Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023 (2019 and 2020 Admissions) CORE COURSE IN MATHEMATICS

6B13 MAT : Linear Algebra

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions. Each question carries one mark.

- Find the null space and range space of the zero transformation from R³ to R³.
- Write a subspace of M_{n×n} (F).
- What is the dimension of C over R?
- State Sylvester's law of nullity. Give an example for an infinite dimensional vector space.
- PART B

Answer any 8 questions. Each question carries two marks.

- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (1, y). Is T linear? 7. Prove that in any vector space V, 0x = 0, for each $x \in V$.
- 8. State Dimensional theorem.
- 9. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + 7y, 2y). Write the matrix of T with respect to the standard ordered bases of R2 and R3.
- 10. If 2 and 2 are eigen values of a square matrix A, then what are the eigen values of A', transpose of A?

P.T.O.

K23U 0516

11. Let $T: F^2 \to F^2$ be a linear transformation defined by T(x, y) = (1 + x, y). Find

-2-

- 12. Determine whether $\{(2, -4, 1), (0, 3, -1), (6, 0, -1)\}$ form a basis for \mathbb{R}^3 . 13. Define an elementary matrix.
- 14. Let A be a 2×2 orthogonal matrix with 3 as an Eigen value. What will be the other Eigen value of A? 15. Give an example for a linear transformation $T:F^2\to F^2$ such that N(T)=R(T).
- 16. State Cayley Hamilton theorem.

Answer any 4 questions. Each question carries four marks.

PART - C

17. Define a vector space.

- 18. Prove that $P_n(F)$ is a vector space.
- 19. Prove that any intersection of subspaces of a vector space V is a subspace of V. 20. Prove that rank(AA') = rank(A).
- 21. Find the rank of 3 4 5 2.
- 22. Let W be a subspace of a finite dimensional vector space V. Then prove that W is finite dimensional and dim W ≤ dim V. Moreover if dim W = dim V then prove that V = W.
- 23. Let $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$. Find A^{-1} using Cayley Hamilton theorem.

Answer any 2 questions. Each question carries six marks.

24. Reduce the matrix A =

3 4 1 2 into normal form and hence find the rank.

PART - D

25. Solve the system of equations

x + 3y - 2z = 0, 2x - y + 4z = 0, x - 11y + 14z = 0.

26. Find the Eigen values and Eigen vectors of 27. State and prove replacement theorem.