Reg. No.:

Name :

IV Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2022 Admissions)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT-CH: Mathematics for Chemistry - IV

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any four questions. Each question carries 1 mark.

- 1. Write the standard form of a Two-dimensional Laplace Equation.
- 2. Differentiate between linear and non-linear PDE.
- Write general formula for numerical integration.
- 4. Define cyclic group. 5. Define symmetric operation.

 $(4 \times 1 = 4)$

Answer any seven questions. Each question carries 2 marks.

6. Identify the type of following Quasi-linear PDE

- b) $U_{xx} + U_{xy} + 5U_{yy} + 6U_x = 0$.
- a) $2xyU_{xy} + xU_{y} + yU_{x} = 0$
- 7. Find the characteristics of $3U_{xx} + 10U_{xy} + 3U_{yy} = 0$.
- 8. Give one dimensional heat equation with boundary conditions. Give solution of the problem by Fourier Series.
- 9. Find the deflection of vibrating string of unit length having fixed ends with initial velocity zero and deflection $f(x) = k(\sin x - \sin 2x)$.

P.T.O.

10. Find the function U(x, t) satisfies the initial value problem.

K24U 0732

 $\frac{\partial^2 U}{\partial t^2} = \frac{\partial^2 U}{\partial \mathbf{v}^2}, \mathbf{x} \in \mathbb{R}, \ t > 0, \ \ U(\mathbf{x}, 0) = \mathbf{x}, \ \ U_{\tau}(\mathbf{x}, 0) = 0.$

11. Evaluate
$$\int_{0.5}^{6} xe^{-0.5x} dx$$
 using the trapezoidal rule with n = 3 to 3 decimal places.

- 12. Solve the initial-value problem y' = y x, $y(0) = \frac{1}{2}$ using modified Euler's method
- with h = 0.1 to obtain an approximation to y(1). 13. Solve the initial-value problem y' = -y, y(0) = 1 using Euler's method with h = 0.01 to obtain an approximation to y(0.04).
- 14. Let G be a group with $(ab)^2 = a^2b^2$ for every a, b in G. Show that G is abelian. 15. Show that the three reflection of NH3 constitute a class. $(7 \times 2 = 14)$
- PART C Answer any four questions. Each question carries 3 marks.

 $(4 \times 3 = 12)$

Solve using the method of separation of variables

 $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$

17. Give the condition when Quasi-linear equation $AU_{xx} + BU_{xy} + CU_{yy} = F(x, y, u, u_x, u_y)$ is

ii) Elliptic

i) Hyperbolic

18. Approximate $\int \sqrt{1+x^3} dx$ using the Trapezoidal rule with n = 5 to 3 decimal

method. Hence find the value of y at x = 0.1 and x = 0.2.

- 19. Solve the differential equation y' = x + y with conditions y(0) = 1 by Taylor series
- 20. List the five type of symmetry elements of molecule. 21. Prove that in any abelian group each element is in a class by itself.

22. Give multiplication table of a group of order 3.

-3-

and initial deflection is given by

y(0) = 1 about $x_0 = 0$.

23. Solve the one dimensional wave equation, $U_{tt} = c^2 U_{xx}$, satisfying $U(0, t) = U(l, t) = 0 \ \forall t$

 $(2 \times 5 = 10)$

K24U 0732

 $f(x) = \begin{cases} \sin\left(\frac{\pi x}{c}\right) & 0 \le x \le c \\ 0 & \text{otherwise} \end{cases} \text{ and } U_t(x, 0) = 0.$ 24. Find the first four terms of the Taylor expansion of the solution of $y' = x + y^2$,

Answer any two questions. Each question carries 5 marks.

- 25. Given that $\frac{dy}{dx} = y x$ where y(0) = 2, find y(0.1) and y(0.4) correct to four decimal places, using Runge-Kutta second order formula. Take h = 0.1. 26. From the group multiplication table for water molecule by verifying the properties of a group.