

Reg. No.:

Name :

Sixth Semester B.Sc. Degree (C.B.C.S.S. – OBE – Regular/Supplementary/ Improvement) Examination, April 2024

(2019 to 2021 Admissions)

CORE COURSE IN MATHEMATICS
6B11 MAT : Complex Analysis

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

 $(4 \times 1 = 4)$

1. Define an analytic function.

- 2. Evaluate ∫[™] cos zdz.
- Write Cauchy-Hadamard formula for radius of convergence.
- Write Maclaurin's series expansion of f(z) = e^z.
- 5. State Picard's theorem.

PART - B

Answer any eight questions. Each question carries two marks. (8x2=16)

- 6. Using the definition of derivative, show that $(z^2)'=2z$.
- 7. Show that $\exp\left(\frac{\pi i}{2}\right) = i$.
- 8. Find In (1 + i)
- 9. Evaluate $\oint_C (z+1)^2 dz$, where C is the unit circle.
- 10. Evaluate $\int_{1}^{1/2} e^{zz} dz$.
- 11. Evaluate $\int_0^1 (1+it)^2 dt$.
- 12. Show that every power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges at the center z_0 .
- 13. State Taylor's theorem.

P.T.O.

K24U 0059

- 14. Find center and radius of curvature of the power series $\sum_{n=0}^{\infty} \frac{\left(z-2i\right)^n}{n^n}$.
- 15. Find Laurent series expansion of $f(z) = \sin \frac{1}{z}$. 16. Define zero of a function. Give an example.
 - PART C

Answer any four questions. Each question carries four marks.

 $(4 \times 4 = 16)$

- 17. Use Cauchy-Riemann equations, show that e^z is an entire function.
- 18. Find an analytic function whose real part is $u(x, y) = x^2 + y^2$.
- State and prove Cauchy's inequality.
- 20. Evaluate $\oint_C \frac{z^3-6}{(2z-i)^2} dz$, where C is the circle |z|=1.
- 21. State and prove comparison test for convergence of a series $\sum_{n=1}^{\infty} z_n$.
- 22. Explain different types of singular points with example.
- 23. Using residues, evaluate the integral $\oint_C \frac{e^{-z}}{z^2} dz$, where C is the circle |z| = 3/2.

PART - D

Answer any two questions. Each question carries six marks.

(2×6=12)

- 24. Show that if f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then the partial derivatives of u(x, y) and v(x, y) satisfy Cauchy-Riemann equations.
- State and prove Cauchy's integral formula.
- 26. a) Find the Maclaurin's series of $f(z) = \frac{1}{1+z^2}$.
 - b) Find the Taylor series of $f(z) = \frac{1}{z}$ with center $z_0 = i$.
- 27. Give two Laurent series expansions with center at $z_0 = 0$ for the function $f(z) = \frac{1}{z^2(1-z)}$ and specify the region of convergence.