Reg. No.	:
Name :	dea besola n al er

VI Semester B.Sc. Degree (CBCSS – Supple./Improv.) Examination, April 2022 (2016 – 2018 Admissions)

CORE COURSE IN MATHEMATICS

CORE COURSE IN MATHEMATICS
6B13MAT : Mathematical Analysis and Topology

Time: 3 Hours

Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Define an elementary step function on [a, b].
- 2. State Dini's Theorem.
- 3. Give an example of a set with unique limit point in the usual metric space \mathbb{R} .
- 4. Write the smallest topology on X = {a, b, c, d}.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. If $f \in \mathcal{R}[a,b]$ and if $(\dot{\mathcal{P}}_n)$ is any sequence of tagged partitions of [a,b] such that $\|\dot{\mathcal{P}}_n\| \to 0$, then prove that $\int_a^b f = \lim_n S(f;\dot{\mathcal{P}}_n)$.
- 6. Prove that if $f \in \mathcal{R}[a, b]$, then the value of the integral is unique.
- 7. State the substitution theorem for Riemann integration.
- 8. Show that the sequence of functions (f_n) defined on [0, 1] by the rule $f_n(x) = x^n$ does not converge uniformly on [0, 1].
- 9. Find the limit function of the sequence of functions $\left(x^n/(1+x^n)\right)$ defined on [0, 2]. Is the limit function continuous on [0, 2]?
- 10. Prove that in a metric space (X, d) the null set, φ and the full set, X are open.

P.T.O.

K22U 0130

- 11. Show that in a metric space each closed sphere is a closed set.
- Prove that in a metric space every convergent sequence is a Cauchy sequence.
- 13. Explain the concept of interior of a set in a topological space with an example.
- 14. Prove that in every topological space X, we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Prove that a function f:[a, b] $\to \mathbb{R}$ belongs to $\Re[a, b]$ if and only if for every $\in > 0$ there exists $\eta > 0$ such that if $\dot{\varphi}$ and \dot{Q} are any tagged partitions of [a, b] with $\|\dot{q}\| < \eta$ and $\|\dot{Q}\| < \eta$, then $|S(f;\dot{q}) S(f;\dot{Q})| < \in$.
- 16. State and prove integration by parts for the Riemann integral.
- 17. Find the radius of convergence of $\sum a_n x^n$, where a_n is given by :
 - i) $\frac{1}{n^{n}}$
 - ii) $\frac{n^n}{n!}$ and
 - iii) $\frac{(n!)^2}{(2n)!}$
- 18. Show that in a metric space a set is open if and only if it is a union of open spheres
- 19. Let X be an infinite set and $\mathcal T$ consist of the empty set ϕ together with those subsets of X whose complements are finie. Show that $\mathcal T$ is a topology on X. Also if $A \subseteq X$ is finite, then find \overline{A} .
- Prove that any closed subset of a topological space is the disjoint union of its set of isolated points and its set of limit points.

-3-

K22U 0130

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. State squeeze theorem and using it prove that, if $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], then $f\in\mathcal{R}[a,b]$.
- 22. State and prove the Fundamental Theorem of Calculus (Second Form). Deduce that, if f is continuous on [a, b], then its indefinite integral F is differentiable on [a, b] and F'(x) = f(x) for all $x \in [a, b]$.
- 23. Define the boundary of a set in a metric space, give an example and show that boundary of A is equal to Ā ∩ Ā'. Also prove that A is closed if and only if it contains it's boundary.
- 24. If $f: X \to Y$ is a mapping of one topological space to another, then show that f is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$.