Reg. No. :

Name :

VI Semester B.Sc. Degree (CBCSS – OBE – Regular)
Examination, April 2022
(2019 Admission)
CORE COURSE IN MATHEMATICS
6B11 MAT : Complex Analysis

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- 1. Find the real and imaginary parts of the function $f(z) = \frac{1}{z}$.
- 2. Evaluate $\int_0^{1+1} z^2 dz$.
- 3. State Morera's theorem.
- 4. Write the Laurent series for $z^2e^{\frac{1}{2}}$.
- 5. Find residue of $f(z) = \frac{\sin z}{z^4}$

PART - B

Answer any eight questions. Each question carries two marks.

- 6. Solve $\cos z = 5$.
- 7. Find the Principal value of In(i).
- 8. Evaluate $\int Re(z) dz$, where C: z(t) = t + 2it, $(0 \le t \le 1)$.
- 9. Show that the fundamental region of e^z is $-\pi < y \le \pi$.
- 10. Find an upperbound for the absolute value of $\int_{0}^{\infty} z^{2} dz$.

P.T.O.

K22U 0414

K22U 0414

PART - D

-3-

11. State identity theorem for power series.

- 12. Define absolute convergence and conditional convergence.
- 13. Check the convergence of $\sum_{n=0}^{\infty} \frac{(100+75i)^n}{n!}$.
- 14. Show that sequence $\{z_n = x_n + iy_n\}$ converges to c = a + ib if and only if $\{x_n\}$. converges to a and $\{y_n\}$ converges to b.

-2-

- 15. State Picard's theorem.
- 16. $\int_{C} \frac{z^3 6}{2z i} dz$ where C is $|z| = \frac{3}{4}$.

PART - C

Answer any four questions. Each question carries four marks.

- 17. Verify $u = x^2 y^2 y$ is harmonic and find the harmonic conjugate of u.
- 18. Find $(1 + i)^{2-i}$.
- 19. State and prove Cauchy's inequality.
- 20. State and prove Liouville's Theorem.
- 21. Find radius of convergence of the following.
 - a) $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$.
 - b) $\left[\left(-1 \right)^n + \frac{1}{2^n} \right] z^n$.
- 22. Find residue at poles of the function $f(z) = \frac{9z + i}{z^3 + z}$.
- 23. Classify isolated singularities. Give suitable examples too.

- Answer any two questions. Each question carries six marks.
- 24. a) State and prove necessary condition for differentiability.
 - b) If f is an analytic function with |f| constant, then show that f is constant.
- 25. a) State Cauchy's Integral Formula.
 - b) $\int_{C} \frac{z^2 + 1}{z^2 1} dz$, where C is |z 1| = 1.
 - c) $\int_{C} \frac{\tan z}{z^2 1} dz$, where C is $|z \frac{\pi}{2}| = \frac{1}{4}$.
- 26. a) Find Maclaurin's series for $f(z) = \frac{1}{(1+z)^2}$.
 - b) Find Taylor's series for $f(z) = \frac{2z^2 + 9z + 5}{z^3 + z^2 8z 12}$.
- 27. a) State and prove Cauchy Residue Theorem.
 - b) Evaluate $\int_{C} \left(\frac{ze^{\pi z}}{z^4 16} + ze^{\frac{\pi}{z}} \right) dz$, where C is the ellipse $9x^2 + y^2 = 9$.