Reg. No. :

VI Semester B.Sc. Degree (CBCSS – Supple./Improv.)

Examination, April 2022

(2016 – 2018 Admissions)

CORE COURSE IN MATHEMATICS

6B12MAT : Complex Analysis

Time: 3 Hours

Max. Marks: 48

SECTION - A

Answer all the questions. Each question carries 1 mark.

- 1. Write $\frac{1}{2-5i}$ in the form x + iy.
- 2. Write e^z in the form u + iv, if $z = 2 + 3\pi i$.
- 3. Define radius of convergence of a power series.
- 4. Give an example of a function having double zero at z = 1.

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 5. Show that $u = -e^{-x} \sin y$ is harmonic.
- 6. Express -3 + 3i in the exponential form.
- 7. Find the value of ln(2 i).
- 8. Find a parametric representation z = z(t) for the upper half of |z 4 + 2i| = 3.

P.T.O.

K22U 0129

- 9. Integrate $\frac{z^3}{2z-i}$ counter clockwise around the unit circle.
- 10. Write Cauchy's inequality.
- 11. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$.
- 12. Is the series $\sum_{n=0}^{\infty} \frac{(100 + 75i)^n}{n!}$ convergent? Justify your answer.
- 13. State Laurent's theorem.
- 14. Find $\operatorname{Res}_{z=0} \frac{\sin 2z}{z^4}$.

SECTION - C

Answer any four questions. Each question carries 4 marks.

- 15. Find all roots of $\sqrt[3]{1+i}$.
- 16. Evaluate $\int_{C} \overline{z} dz$ where C is the arc from 0 to 1 + i along the parabola $y = x^2$.
- 17. Evaluate $\int_{C} \frac{2z^3 + z^2 + 4}{z^4 + 4z^2} dz$ where C is the circle |z 2| = 4, clockwise.
- 18. State and prove Morera's Theorem.
- 19. Find all Laurent series of $\frac{1}{z^3 z^4}$ with center zero.
- 20. Show that the zeros of an analytic function are isolated.

-3-

K22U 0129

SECTION - D

Answer any two questions. Each question carries 6 marks.

- 21. Verify that $u = x^2 y^2 y$ is harmonic and find its harmonic conjugate.
- 22. If f(z) is analytic in a simply connected domain D, then show that there exist a function F(z) such that F'(z) = f(z) which is analytic in D. Also prove that $\int\limits_C f(z)dz = F(z_1) F(z_0) \text{ where C is any path from } z_0 \text{ to } z_1 \text{ in D}.$
- a) Prove that a power series with non zero radius of convergence is the Taylor series of its sum.
 - b) Find a Taylor series expansion about i of $\frac{1}{z}$.
- 24. State Residue theorem. Using that evaluate $\int_C \left(\frac{ze^{\pi z}}{z^4 16} + ze^{\frac{\pi}{z}} \right) dz$ where C is the ellipse $9x^2 + y^2 = 9$ (counter clockwise).