Reg. No. :	Let S be a tinearly independent subset of there exist a maximal timearly independent
Name :	
9/16 (3:30 .11 = 1) .1 / F Balti (13)	Lift If a wife a mean transformation su

VI Semester B.Sc. Degree (CBCSS – OBE – Regular) Examination, April 2022
(2019 Admission)

CORE COURSE IN MATHEMATICS
6B13 MAT: Linear Algebra

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- 1. Find the equation of the line passing through the points (3, -2, 4) and (-5, 7, 1).
- 2. State true or false: A set consisting of a single non zero vector is linearly dependent.
- 3. Define the formula for the linear transformation that rotates a vector (a_1, a_2) in \mathbb{R}^2 counter clockwise through an angle θ .
- State Dimension Theorem.
- 5. What is the smallest possible nullity of a 3×5 matrix?

PART - B

Answer any eight questions. Each question carries two marks.

- 6. Let $S = \{(a_1, a_2) \mid a_1, a_2 \in \mathbb{R}\}$. Define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$. Is S a vector space? Justify your answer.
- 7. Show that the set of all n \times n matrices having trace equal to zero is a subspace of $M_{n\times n}(F).$
- 8. Let W be a subspace of a vector space over a field F. Then prove that $v_1 + W = v_2 + W$ iff $v_1 v_2 \in W$.
- 9. Check whether the set $\{(1, -1, 2), (1, -2, 1), (1, 1, 4)\}$ is linearly independent or not.

P.T.O.

K22U 0416

- Let S be a linearly independent subset of a vectorspace V. Then prove that there exist a maximal linearly independent subset of V that contains S.
- 11. If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that T(1, 1) = (1, 0, 2) and T(2, 3) = (1, -1, 4), then find T(8, 11).
- 12. Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing to row echelon form.
- 13. Let V and W be vector spaces and T : $V \rightarrow W$ be linear. Show that the nullspace N(T) and range of T, R(T) are subspaces of V and W respectively.
- 14. If A is a square matrix with λ as an eigenvalue, then prove that λ^{-1} is an eigenvalue of A^{-1} .
- 15. Find A⁻¹ using Cayley Hamilton Theorem for the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.
- 16. For what value of k the following system of homogeneous equations have a non trivial solution : x + 2y 3z = 0, 2x + y + z = 0 and x y + kz = 0?

PART - C

Answer any four questions. Each question carries four marks.

- Let V be a vector space. Then show that a subset W of V is a subspace of V if and only if the following conditions hold.
 - a) 0 ∈ W
 - b) $x + y \in W$
 - c) cx ∈ W.
- 18. If W_1 and W_2 are subspaces of a vectorspace V, then prove that W_1+W_2 is a subspace of V that contains both W_1 and W_2 .
- 19. Determine whether the set $\{(-1, 3, 1), (2, -4, -3), (-3, 8, 2)\}$ is a basis for \mathbb{R}^3 .
- 20. Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (2a_1 a_2, 3a_1 + 4a_2, a_1)$ with respect to the standard ordered basis.
- 21. Reduce to normal form and find the rank of $\begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$

THE REAL PROPERTY OF THE PROPE

22. Solve

x + 3y + 3z = 12x + 6y + 9z = 5

-x - 3y + 3z = 5.

23. Find the null space and nullity of $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$.

PART - D

K22U 0416

Answer any two questions. Each question carries 6 marks.

- 24. Show that the set of all $m \times n$ matrices with entries from a field F is a vector space over F.
- 25. Define basis of a vectorspace with an example. Show that every vectorspace of finite dimension has the same number of vectors.
- 26. Find the inverse of A = $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$ using elementary row operations.
- 27. Find the null space and range space of $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & -1 \end{bmatrix}$