Reg. No.:....

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) CORE COURSE IN MATHEMATICS

5B08MAT : Differential Equations and Laplace Transforms

Time: 3 Hours

Max. Marks: 48

PART - A (Short Answer)

Answer any four questions from this Part. Each question carries 1 mark. (4×1=4)

- 1. Solve dy + ydx = 0.
- 2. State the order of the ODE $y'' + \pi y^3 = 0$.
- 3. Define Wronskian.
- 4. Write the characteristic equation of $\frac{d^3y}{dx^3} + y = \sin 4x$.
- 5. Define unit step function.

PART - B (Short Essay)

Answer any eight questions from this Part. Each question carries 2 marks.

 $(8 \times 2 = 16)$

- 6. Find the integrating factor of ydx xdy = 0.
- 7. Find the order and degree of $\frac{d^3y}{dx^3} + 2\left(\frac{dy}{dx}\right)^{\frac{1}{2}} = 0$.
- 8. Show that a separable equation is also exact.
- 9. State the uniqueness theorem of first order differential equation.
- 10. Find the basis of the solution of the equation $\frac{d^2y}{dx^2} + y = 0$.

P.T.O.

K22U 2323

0

K22U 2323

- 11. Find the general solution of $\frac{d^2y}{dx^2} + 4y = 0$.
- 12. Write the standard form of Euler-Cauchy equation. Give one example of it.

-2-

- 13. Find the Wronskian of e^x and e^{-x}.
- 14. Find the convolution of t and e^{-t}.
- 15. Find the Laplace transform of f(t) = tcos4t.
- 16. Evaluate $L^{-1} \left[\frac{2}{(s+4)^3} \right]$.

(Essay)

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 17. Find the orthogonal trajectories of the family $y^2 = 2x^2 + c$.
- 18. Solve $(xy' + y = xy^{\frac{3}{2}}, y(1) = 4$.
- 19. Solve $\frac{d^2y}{dx^2} 13\frac{dy}{dx} + 12y = e^{-2x}$.
- 20. Solve $\frac{d^2y}{dx^2} + 16y = -4\cos 4x$.
- 21. Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^2$.
- 22. Find the Laplace transform of the function f(t) = t; if $t \ge 2$ and 0, if t < 2.
- 23. Solve y'' + 3y' + 2y = r(t) = u(t 1) u(t 2), y(0) = 0, y'(0) = 0.

PART - D

(Long Essay)

Answer any two questions from this Part. Each question carries 6 marks.

 $(2 \times 6 = 12)$

- 24. Solve $\left(\frac{3-y}{x^2}\right) dx + \left(\frac{y^2-2x}{xy^2}\right) dy = 0$, y(-1) = 2 by exactness.
- 25. Solve the initial value problem $(y + \sqrt{x^2 + y^2})dx xdy = 0$, y(1) = 0.
- 26. Solve $x^2y'' 2xy + 2y = 0$, y(1) = 1, y'(1) = 1.
- 27. Using Laplace transform, solve $y'' + 4y' + 3y = e^{-t}$, y(0) = y'(0) = 1.