- 10. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ be permutations in S_6 . Find $\tau \sigma$ and $|\langle \sigma \rangle|$.
- 11. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ in S₈ as a product of disjoint cycles and then as a product of transpositions.
- 12. Find all orbits of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 2 & 4 \end{pmatrix}$.
- 13. Find the index of (3) in the group of \mathbb{Z}_{24} .
- 14. Prove that every group of prime order is cyclic.
- 15. Prove that a group homomorphism $\phi: G \to G'$ is a one to one map if and only if ker $(\phi) = \{e\}$.
- 16. Let R be a ring with additive identity 0. Then for any a, b ∈ R prove that
 - a) a0 = 0a = 0
 - b) a(-b) = (-a)b = -(ab).

PART - C

Answer any 4 questions from among the questions 17 to 23. These questions carry 4 marks each.

- 17. Let G be a group and let g be one fixed element of G. Show that the map I_g , such that $i_g(x) = gxg'$ for $x \in G$ is an isomorphism of G with itself.
- 18. Draw subgroup diagram for Klein 4-group V.
- 19. Let G be a finite cyclic group of order n with generator a. Prove that G is isomorphic to $(\mathbb{Z}_n, +_n)$.
- 20. Let $n \ge 2$. Prove that the collection of all even permutations of $\{1, 2, 3, ..., n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 21. Let H be a subgroup of G such that g^{-1} hg \in H for all $g \in$ G and all h \in H. Show that every left coset gH is the same as the right coset Hg.

0

- 22. Let H be a subgroup of G. Prove that left coset multiplication is well defined by the equation (aH) (bH) = (ab)H if and only if H is a normal subgroup of G.
- 23. Let ϕ : $\mathbb{Z} \to S_8$ be homomorphism such that $\phi(1) = (1, 4, 2, 6)$ (2, 5, 7). Find ker (ϕ) and $\phi(20)$.

PART - D

Answer any 2 questions from among the questions 24 to 27. These questions carry 6 marks each.

- 24. a) Let G be a cyclic group with n elements and generated by a. Let $b \in G$ and $b = a^s$. Prove that
 - i) b generates a cyclic subgroup of H of G containing n/d elements, where d is the gcd of n and s.
 - ii) $\langle a^s \rangle = \langle a^t \rangle$ if and only if gcd (s, n) = gcd (t, n).
 - b) Let p and q be prime numbers. Find the number of generators of the cyclic group \mathbb{Z}_{pq} .
- 25. a) Prove that every coset (left or right) of a subgroup H of a group G has the same number of elements as H.
 - b) State and prove Lagrange's theorem.
- 26. Let $\phi: G \to G'$ be a group homomorphism and let $H = \ker(\phi)$. Let $a \in G$. Prove that the set $\phi^{-1}[\{\phi(a)\}] = \{x \in G : \phi(x) = \phi(a)\}$ is the left coset aH of H and is also the right coset Ha of H.
- 27. a) Prove that every field F is an integral domain.
 - b) Prove that every finite integral domain is a field.
 - c) Give an example of an integral domain which is not a field.

K22U 2322

Reg. No.:

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/
Improvement) Examination, November 2022
(2019 Admission Onwards)
CORE COURSE IN MATHEMATICS
5B07MAT : Abstract Algebra

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any 4 questions. They carry 1 mark each.

- 1. Find the order of the cyclic subgroup of \mathbb{Z}_4 generated by 3.
- 2. What is the order of the cycle (1, 4, 5, 7) in S_8 ?
- 3. Let $\phi: G \to G'$ be a group homomorphism of G onto G'. If G is abelian, prove that G' is abelian.
- 4. Let p be a prime. Show that $(a + b)^p = a^p + b^p$ for all $a, b \in \mathbb{Z}_p$.
- 5. Solve the equation 3x = 2 in the field \mathbb{Z}_7 .

PART - B

Answer any 8 questions from among the questions 6 to 16. These questions carry 2 marks each.

- 6. Prove that in a group G, the identity element and inverse of each element are unique.
- 7. Let H and K be subgroups of a group G. Prove that $H \cap K$ is a subgroup of G.
- 8. State and prove division algorithm for \mathbb{Z} .
- 9. Let G be a group and suppose $a \in G$ generates a cyclic subgroup of order 2 and is the unique such element. Show that ax = xa for all $x \in G$.