
PART - D

8. Write all cut vertices and cut edges of the graph.

- 9. In a tree, prove that every edge is a cut edge.
- 10. For a connected graph G, define the terms radius and center.
- 11. Find a covering and a minimal covering for the wheel graph W₅.
- 12. Define a Hamiltonian graph. Give an example. Explain why it is Hamiltonian.
- 13. Draw a symmetric digraph on 5 vertices.
- 14. Plot a strict digraph on 5 vertices.

PART - C

Answer any 4 questions.

0

- 15. Show that if G is a self complementary graph of order n, then $n \equiv 0$ or $1 \pmod{4}$.
- 16. For any graph G, prove that either G or Gc is connected.
- 17. Show that every tree is a bipartite graph.
- 18. Prove that a graph G with at least 3 vertices is 2-connected if and only if any two vertices of G lie on a common cycle. The standard evaluation of G lie on a common cycle.
- 19. For a graph G, prove that $\alpha + \beta = n$.
- 20. Define an Eulerian graph. Give one Eulerian and one non Eulerian graph. Justify.

Answer any 2 questions.

(6×2=12)

- 21. Show that a graph G is bipartite if and only if it contains no odd cycle.
- 22. If e is not a loop of a connected graph G, prove that $\tau(G) = \tau(G e) + \tau(G \circ e)$.
- 23. For a nontrivial connected graph G, prove that the following statements are equivalent.
 - a) G is Eulerian.
 - b) The degree of each vertex of G is an even positive integer.
 - c) G is the union of edge disjoint cycles.
- 24. Prove that every tournament contains a directed Hamiltonian path.

K22U 1966

Name :

V Semester B.Sc. Degree (CBCSS - Supplementary) Examination, November 2022 (2017-18 Admissions) CORE COURSE IN MATHEMATICS

5B09MAT : Graph Theory

Time: 3 Hours

Max. Marks: 48

PART - A

Answer all 4 questions.

 $(1 \times 4 = 4)$

- 1. Draw a graph on 5 vertices having a cut vertex. Mark all the cut vertices.
- 2. Sketch 2 non isomorphic trees on 5 vertices.
- 3. Draw a Tournament on 4 vertices.
- 4. In a digraph, write the possible values of indegree and outdegree of a pendent

PART - B

Answer any 8 questions.

 $(2 \times 8 = 16)$

- 5. Prove that sum of degrees of the vertices of a graph is equal to twice the number of its edges.
- 6. Define a complete bipartite graph and hence draw the graph $K_{2,3}$.
- 7. Find K(G) and $\tau(G)$ for the graph.