- 8. Using Euler's method, solve the differential equation y' = -y, with the condition y(0) = 1. Choose h = 0.01 and compute y(0.04).
- 9. Evaluate $\iint_s \vec{F} \cdot \hat{n} dA$ where $\vec{F} = x^2 \hat{i} + 3y^2 \hat{k}$ and S is the portion of the plane x + y + z = 1 in the first octant.
- 10. Using Stoke's theorem evaluate $\iint_S (\text{curl } \vec{F}) \cdot \hat{n} dA$ where $\vec{F} = y\hat{i} x\hat{j}$ and S is the circular semidisk $x^2 + y^2 \le 4$, $x \ge 0$, z = 0.
- 11. Using Divergence theorem, evaluate $\iint_S (x^3 \, dy dz + x^2 y \, dz dx + x^2 z \, dx dy)$ where S is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ ($0 \le z \le b$) and the circular disks z = 0 and z = b ($x^2 + y^2 \le a^2$).
- 12. Given that the equation $x^{2.2} = 69$ has a root between 5 and 8, use the method of regular-falsi to determine it.
- 13. Find the missing term in the following table.

X	0	13/1	2	3	4
V	1	3	9	_	81

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Show that the curvature of a circle of radius a is $\frac{1}{a}$.
- 15. Is the velocity vector $\vec{v} = y_i x_j$ irrotational?
- 16. Using Green's theorem, evaluate $\oint_C F(r).dr$ where $F = x^2 e^y \hat{i} + y^2 e^x \hat{j}$, C is the rectangle with vertices (0, 0), (2, 0), (2, 3) and (0, 3).
- 17. Given the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$ with the initial condition y = 0 when x = 0, use Picard's method to obtain y for x = 0.25 correct to 3 decimal places.

- 18. Find a real root of the equation $x = e^{-x}$, using the Newton-Raphson method.
- 19. The table below gives the values of tan x for $0.10 \le x \le 0.30$

X	0.10	0.15	0.20	0.25	0.30
y = tan x	0.1003	0.1511	0.2027	0.2553	0.3093

Find tan 0.26.

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. For any twice continuously differentiable vector function \vec{v} , show that $div(curl \vec{v}) = 0$.
- 21. From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2.

х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
У	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- 22. Verify Stoke's theorem for $F = [z^2, 5x, 0]$ over the square $S : 0 \le x \le 1, 0 \le y \le 1, z = 1.$
- 23. Given $\frac{dy}{dx} = 1 + y^2$ where y = 0 when x = 0, find y(0.2) correct to four decimal places, by Runge-Kutta fourth-order formula.

K22U 1724

Reg. No. :

IV Semester B.Sc. Degree (CBCSS – Supplementary) Examination, April 2022 (2016 – 18 Admissions)

COMPLEMENTARY COURSE IN MATHEMATICS
4C04MAT-PH: Mathematics for Physics and Electronics – IV

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Define curl of a vector field.
- 2. Find the divergence of $x^2\hat{i} + y^2\hat{j}$.
- 3. Give the parametric representation of the cylinder $x^2 + y^2 = a^2$, $-1 \le z \le 1$.
- 4. Write Newton's backward difference interpolation formula.

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find a unit normal vector of the cone of revolution $z^2 = 4(x^2 + y^2)$ at (1, 0, 2).
- 6. The function y = sin x is tabulated below. Using Lagrange's interpolation formula, find the value of sin $\frac{\pi}{6}$.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	
y = sin x	0	0.70711	1.0	

7. Using Picard's method, obtain the solution of $\frac{dy}{dx} - 1 = xy, y(0) = 1.$