Reg. No. :

Name :

Third Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

3C03 MAT - ST : Mathematics for Statistics - III

Time: 3 Hours

Max. Marks: 40

EMBIN SEIN PART - A LUI NOSE ANDIZAUD 1901 AND 1840 ANDI

Answer any four questions. Each question carries one mark.

- 1. Give the standard form of Bernoulli equation.
- 2. Using Wronskian, prove that cos5x and sin5x are linearly independent.
- 3. Find the Laplace transform of sinh at.
- Find L(t sinωt).
- 5. Find the fundamental period of $\sin 2\pi x$.

PART-B

Answer any seven questions. Each question carries 2 marks.

- 6. Solve $y' = 1 + y^2$.
- 7. Test exactness for $(x^2 + y^2) dx 2xy dy = 0$.
- 8. Find the general solution of y' y = 5.2.
- 9. Prove that e^{-x} cosx and e^{-x} sinx forms a basis of solutions of y'' + 2y' + 2y = 0.
- 10. Solve the initial value problem y'' + y' 2y = 0, y(0) = 4, y'(0) = -5.
- 11. Prove that $\mathcal{L}(t^a) = \frac{\Gamma(a+1)}{s^{a+1}}, a>0$.

P.T.O.

K22U 3635

- 12. Find Laplace transform of sinh t cost.
- 13. Find $\mathcal{L}^{-1} = \frac{6s+7}{2s^2+4s+10}$
- 14. Find the inverse transform of In 15. Find the Fourier sine series of the function $f(x) = \pi - x$ in $0 < x < \pi$.

PART - C Answer any four questions. Each question carries three marks.

Find an integrating factor and solve the initial value problem (e^{x + y} +ye^y) dx +

- $(xe^{y}-1) dy = 0, y(0) = -1.$ 17. Solve the initial value problem $y' + y \sin x = e^{\cos x}$, y(0) = -2.5.
- 18. Solve the initial value problem y'' y' 2y = 0, y(0) = 4, y'(0) = -5.
- 19. Solve $x^2y'' xy' + y = 0$, y(1) = 1.5, y'(1) = 0.25.
- 20. Using Laplace method solve y'' + y = 6, y(0) = 1, y'(0) = -2.
- 21. Find Fourier series of $f(x) = \begin{cases} 0, & \text{if } -\pi < x < 0 \\ x, & \text{if } 0 < x < \pi \end{cases}$, which is a periodic function with period 2π .
- 22. Find the Fourier series of the function $f(x) = \begin{cases} -1, & \text{if } -2 < x < 0 \\ 1, & \text{if } 0 < x < 2 \end{cases}$, with period p = 4. PART - D

Answer any two questions. Each question carries five marks. 23. Solve $y' = 3.2y - 10y^2$.

- Using method of variation of parameters, solve y" + 4y = tan2x.
- 25. Using Laplace transform, solve $y'_1 = 2y_1 3y_2$, $y'_2 = y_2 2y_1$, $y_1(0) = 8$, $y_2(0) = 3$.
- 26. Find the Fourier series of $f(x) = \begin{cases} -k, & \text{if } -\pi < x < 0 \\ k, & \text{if } 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Also deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$.