Reg. No. :

Name :

V Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - O.B.E. - Regular) Examination, November 2023 (2021 Admission) 5B21 BMH: ADVANCED LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- Define eigenvalue of a square matrix.
- 2. Find the characteristic polynomial of $A = \begin{bmatrix} 7 & -15 \\ 2 & -4 \end{bmatrix}$.
- 3. State spectral theorem for symmetric matrices.
- 4. Prove that any projection is idempotent.
- 5. Find the Hermitian conjugate of A = $\begin{bmatrix} i & 5-3i & 2+i \\ 3 & 1+2i & 4-9i \end{bmatrix}$ SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12)

- 6. Find the eigenvalues of $A = \begin{bmatrix} 4 & 0 & 4 \\ 0 & 4 & 4 \\ 4 & 4 & 8 \end{bmatrix}$ 7. Prove that the determinant of an n x n matrix A is equal to the product of
- eigenvalues. 8. With the usual inner product on \mathbb{R}^4 , prove that the vectors $\mathbf{x} = (1, -1, 2, 0)^T$ and
- $y = (-1, 1, 1, 4)^{T}$ are orthogonal.

P.T.O.

9. State and prove generalised Pythagoras theorem.

K23U 2648

-2-

K23U 2648

- Prove that transpose of an orthogonal matrix is orthogonal.
- 11. If U and W are subspaces of V, then prove U + W = $\{u + w/u \in U, w \in W\}$ is a 12. Let $V = \mathbb{R}^3$ be an inner product space and $S = \text{Lin}\{u, w\}$, where $u = (1, 2, -1)^T$
- 13. If A is an n \times n matrix with real entries and if λ is a complex eigenvalue with
- corresponding eigenvector v, then prove that $\overline{\lambda}$ is also an eigenvalue of A with corresponding eigenvector v.
- 14. Prove that $v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$, $v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} i \\ 1 \end{bmatrix}$ form an orthonormal basis of \mathbb{R}^2 . SECTION - C Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

15. Find the eigenvalues and the eigenvectors for the matrix $\begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix}$. 16. Prove that an $n \times n$ matrix A is diagonalisable if and only if it has n linearly

- independent eigenvectors. 17. Diagonalise the matrix $A = \begin{bmatrix} 4 & 5 \\ -1 & -2 \end{bmatrix}$
- 18. State and prove Cauchy Schwarz inequality.
- 19. Suppose V is an inner product space and that vectors $v_1, v_2, ..., v_k \in V$ are pairwise orthogonal and none is the zero vector. Then prove that $\{v_1, v_2, ..., v_k\}$ is a linearly independent set of vectors.

20. Use the Gram Schmidt process to find an orthonormal basis for the subspace

of R⁴ spanned by the vectors $v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$.

23. Suppose, A is an m \times n real matrix of rank n. Prove that the matrix $P = A(A^TA)^{-1}A^T$ represents the orthogonal projection of \mathbb{R}^m on to the range R(A) of A.

24. Prove that an n x n matrix P is unitary if and only if the columns of P are an orthonormal basis of Cn. 25. State and prove spectral decomposition theorem.

22. Suppose that A is an m × n real matrix. Prove that $R(A)^{\perp} = N(A^{T})$.

-3-

21. Suppose U and W are subspaces of a vector space. Prove that sum of U and W is direct if and only if every vector z in the sum can be written uniquely as

26. Suppose E_1 , E_2 , E_3 are three matrices such that $E_i E_j = \begin{cases} E_i, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$, for i = 1, 2, 3. Prove that $(\alpha_1 E_1 + \alpha_2 E_2 + \alpha_3 E_3)^n = \alpha_1^n E_1 + \alpha_2^n E_2 + \alpha_3^n E_3$ for any positive integer

n and $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$. SECTION - D

z = u + w, where $u \in U$ and $w \in W$.

- Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12) 27. Prove that eigenvectors corresponding to different eigenvalues are linearly independent.
- 28. Orthogonally diagonalise the matrix A = Let V be a finite dimensional inner product space and S be any subspace of V.

Find the spectral decomposition of the matrix A =

Prove that $V = S \oplus S^{\perp}$.

0 - Deduce the

1-i

spectral decomposition of A³ and use it to find the matrix A³.