Reg. No. :	
Name :	

IV Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, April 2024

(2019 to 2022 Admissions) CORE COURSE IN STATISTICS 4B04STA : Statistical Inference – 1

Time: 3 Hours

Max. Marks: 48

PART - A (Short Answer)

Answer all questions:

 $(6 \times 1 = 6)$

- Define F statistic.
- 2. State the additive property of Chi square distribution.
- 3. Define minimum variance bound estimator.
- 4. T₁ and T₂ are two unbiased estimators of a parameter. When we say T₁ is more efficient than T2?
- 5. What is Fisher information ?
- 6. Write the confidence interval for the mean of normal distribution when population standard deviation is unknown and n is small.

PART - B (Short Essay)

Answer any 7 questions :

 $(7 \times 2 = 14)$

- Define t distribution.
- 8. Find the method of moment estimator for both N and p in B(N, p) population.
- 9. Differentiate between point estimation and interval estimation.
- 10. Find the Cramer Rao lower bound for the variance of any unbiased estimator of λ where λ is the mean of the Exponential population.
- Mention the properties of moment estimators.
- 12. Let $X_1, X_2, ..., X_n$ be a random sample of size n from Poisson population with parameter λ . Obtain an unbiased estimator of $e^{-\lambda}$.
- 13. Prove or disprove by an example that maximum likelihood estimates are always unbiased.

P.T.O.

K24U 0750

- State Cramer Rao inequality.
- 15. The mean of a sample of size 20 from a normal population N(μ, 8) was found to be 81.2. Find a 90% confidence interval for μ .

PART - C (Essay)

Answer any 4 questions:

 $(4 \times 4 = 16)$

- 16. Derive the moment generating function of χ^2 distribution with n degrees of freedom.
- 17. Establish the relation between Chi square, t and F statistic. 18. Examine the sufficiency of $\sum x_i^2$ for σ^2 in the N(0, σ^2) distribution.
- 19. Let $X_1, X_2, ..., X_n$ be a random sample of size n from U[0, θ] population. Obtain MVUE of 0.
- 20. Explain the construction of the confidence intervals for ratio of variances of two normal populations. 21. A random sample of 500 apples was taken from a large consignment and of
- these 65 were bad. Estimate the proportion of bad apples by a 90% confidence interval.

PART - D (Long Essay)

Answer any 2 questions :

 $(2 \times 6 = 12)$

- 22. Derive the sampling distribution of sample mean when samples are taken from $N(\mu, \sigma^2)$. 23. Let x_1, x_2, \dots, x_n be a random sample of n observations from $N(\theta, 1)$.
- Find Fisher's measure of information in estimating θ .
- 24. Let x_1, x_2, \ldots, x_n be a random sample from $N(\mu, \sigma^2)$ population. Find sufficient statistics for
 - i) μ when σ^2 is known ii) σ2 when μ is known
 - iii) μ and σ^2 when both are unknown.
- 25. Obtain 95% confidence interval for the difference of means of a normal
- population $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$ when i) σ_1 and σ_2 are known

 - ii) σ, and σ, are unknown.