K24U 0087

Reg. No.	:
Name:	

Sixth Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2021 Admissions) DISCIPLINE SPECIFIC ELECTIVE IN STATISTICS

6B13CSTA: Stochastic Processes

Time: 3 Hours

Max. Marks: 48

PART - A (Short Answer)

Answer all questions. Each question carries one mark.

- Define joint pmf of two random variables.
- Define generating function of a discrete random variable.
- Give an example of a Markov chain.
- 4. When do you say that a state is recurrent?
- Define Poisson process.
- 6. What do you mean by a process with stationary independent increments? $(6 \times 1 = 6)$

PART - B (Short Essay)

Answer any seven questions. Each question carries two marks.

- Obtain the pgf of a binomial distribution.
- State consistency theorem.
- Define Chapman-Kolmogorov equation.
- 10. What is stationary distributions?
- Explain absorption probabilities.
- What are the postulates of a Poisson process.

P.T.O.

K24U 0087

- 13. Obtain the distribution of inter arrival time between two successive Poisson processes.
- 14. Explain Branching processes.
- 15. If ϕ_n denote the generating function of nth generation X_n , n = 0, 1, 2, ..., then show that $\phi_n(s) = \phi_{n-1}[\phi(s)]$. $(7 \times 2 = 14)$

PART - C

(Essay)

Answer any four questions. Each question carries four marks.

- 16. Let X and Y are two non-negative integer valued random variables with $P(X = x_k) = a_k$ and $P(Y = y_k) = b_k$. Find the distribution of Z = X + Y. 17. Let $\phi(s)$ denote the pgf of a discrete random variable X. Obtain the expressions
- for the mean and variance of X in terms of o(s). 18. Let $X \sim N(0, \sigma^2)$. Find E(X|X > 0) variance Var(X|X > 0).
- 19. Consider a Markov chain with states {0, 1, 2} and TP matrix P = 1 Show that the state 0 has period 2. State and prove the additive property of a Poisson process.
- 21. Let p_{ij} , k = 0, 2, 3 be the probability that an individual in a generation generates
- k offsprings. Find the extinction probability. $(4 \times 4 = 16)$ PART - D

(Long Essay)

- Answer any two questions. Each question carries six marks.
- 23. Consider a Markov chain with states {0, 1} and TP matrix P = Show that 1) the state i is recurrent 2) the state 1 is transient.

22. Explain the different classification of stochastic processes with examples.

- Establish the relation connecting Poisson process and binomial distribution.
- 25. Show that if a stochastic process $\{X(t), t \in T\}$ is strict sense stationary then it is also wide sense stationary. $(2 \times 6 = 12)$