

Reg. No.:

Name :

III Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2023 (2019 to 2022 Admissions)

(2019 to 2022 Admissions)
CORE COURSE IN STATISTICS

3B 03 STA: Probability Distribution and Limit Theorems

Time: 3 Hours

Max. Marks: 48

Instruction: Use of calculators and statistical tables are permitted.

PART - A

Answer all questions. Each question carries 1 mark:

 $(6 \times 1 = 6)$

1. Define moment generating function.

- 2. Let X ~ B(n, p), show that $E\left(\frac{X}{n} p\right)^2 = \frac{pq}{n}$.
- 3. Define Log-normal distribution.
- 4. Let X and Y are two independent Gamma variates with parameters μ and λ respectively. Then identify the distribution of X + Y.
- 5. Give the characteristic function of standard Cauchy distribution.
- State Chebychev's inequality.

PART - B

Answer any 7 questions. Each question carries 2 marks :

 $(7 \times 2 = 14)$

- 7. State and prove the reproductive property of independent Poisson variates.
- Define hyper geometric distribution.
- If X is a Poisson variate such that P(X = 2) = 9 P(X = 4) + 90 P(X = 6). Find the mean of X.
- If X is a normal variate with mean 30 and standard deviation 5, find P(|X 30| > 5).
- 11. State the lack of memory property of exponential distribution.

P.T.O.

K23U 3451

- 12. Find the mean and variance of exponential distribution with parameter λ .
- 13. Define bivariate normal distribution.
- 14. State the Lindberg-Levy central limit theorem.
- 15. Define convergence in probability.

PART - C

Answer any 4 questions. Each question carries 4 marks:

 $(4 \times 4 = 16)$

- 16. If X and Y are independent Poisson variates such that P(X = 1) = P(X=2) and P(Y = 2) = P(Y = 3). Find the variance of X-2Y.
- 17. Let X_1 and X_2 are independent random variables with geometric distribution pq^k , k=0,1,2,... Show that the conditional distribution of X_1 given $X_1 + X_2$ is uniform.
- Prove that for the normal distribution, the quartile deviation, mean deviation and standard deviation are approximately 10:12:15.
- 19. State Weak law of large numbers.
- 20. Let $X \sim \beta_1(\mu, \nu)$ and $Y \sim \gamma(\lambda, \mu + \nu)$ be independent random variables $(\mu, \nu, \lambda > 0)$. Find the probability density function of XY and identify the distribution.
- 21. State and prove Benoulli's law of large numbers.

PART - D

Answer any 2 questions. Each question carries 6 marks:

(2×6=12)

- 22. Define negative binomial distribution, If $X \sim B(n,p)$ and Y has negative binomial distribution with parameters r and p, prove that $F_X(r-1) = 1 F_Y(n-r)$.
- 23. If X_1 and X_2 are independent rectangular variates on [0, 1], find the distributions of (i) $\frac{X_1}{X_2}$, (ii) $X_1 \cdot X_2$ and (iii) $X_1 + X_2$.
- 24. Let X ~ N(0, 1) and Y~N(0, 1) be independent random variables. Find the distribution of X/Y and identify it.
 25. State and prove the Research
- 25. State and prove the De-Moivre's Laplace central limit theorem.