

Reg. No.:

VI Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023 (2019 and 2020 Admissions) CORE COURSE IN STATISTICS

6B10STA: Mathematical Methods for Statistics - II

Time: 3 Hours

Max. Marks: 48

PART - A (Short Answer)

Answer all questions. Each question carries one mark.

- State Taylors theorem.
- Define differentiability.
- Define improper integral.
- 4. Examine the convergence of $\int_{0}^{2} \frac{dx}{(2x-x^2)}$
- State dimension theorem.
- Define eigen values and eigen vectors.

 $(6 \times 1 = 6)$

PART - B (Short Essay)

Answer any seven questions. Each question carries two marks.

- 7. Define Reimann integral.
- 8. Show that the function f defined by $f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$ is not integrable on any interval.
- 9. State fundamental theorem of integral calculus.
- 10. Find the maxima and minima of a function $f(x, y) = x^3 + y^3 3x 12y + 20$.
- 11. If $f(x, y) = 2x^2 xy + 2y^2$, then find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (1, 2).
- 12. Test the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}$.
- 13. Define beta and gamma integrals.

P.T.O.

K23U 0537

- 14. When do you say that vectors are linearly independent?
- 15. Find the characteristic roots and corresponding characteristic vectors for the

following matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
.

 $(7 \times 2 = 14)$

PART - C (Essay)

Answer any four questions. Each question carries four marks.

- 16. If P* is a refinement of a partition P, then for a bounded function f, prove that $L(P^*, f) \ge L(P, f)$.
- 17. State and prove a necessary and sufficient condition for integrability of a bounded function.
- State and prove first mean value theorem.
- Write a short note on the method of Lagrange's multipliers.
- State and prove a necessary and sufficient condition for the convergence of the improper integral \int fdx at a, where f is positive in [a, b].
- 21. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 9 & 2 & 0 \\ 5 & 0 & 3 \end{bmatrix}$ using Cayley Hamilton theorem. (4×4=16) PART - D (Long Essay)

Answer any two questions. Each question carries 6 marks. Prove that every continuous function is integrable.

- 23. If $f(x, y) = xy \frac{(x^2 y^2)}{(x^2 + y^2)}$ when $x^2 + y^2 \neq 0$, and f(0, 0) = 0, show that i) $f_x(x, 0) = 0 = f_y(0, y)$ ii) $f_x(0, y) = -y$, $f_y(x, 0) = x$.
- 24. Prove that the improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$ converges if and only if n < 1.
- 25. If a + b + c = 0, find the characteristic roots of the matrix $A = \begin{bmatrix} a & c & b \\ c & b & a \end{bmatrix}$. (2×6=12)