K22U 2338

Reg. No.:....

Name :

V Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) Core Course in Statistics 5B06 STA: MATHEMATICAL METHODS FOR STATISTICS – I

Time: 3 Hours

Max. Marks: 48

Instruction: Scientific calculators can be permitted.

PART - A

Answer all questions. Each carries 1 mark.

(6×1=6

- 1. Define Bounded Sequence.
- 2. State D'Alembert's ratio test for series.
- 3. Define uniform continuity of a function in an interval.
- 4. State Cauchy's mean value theorem.
- 5. Evaluate $\lim_{x\to 0} -\frac{|x|}{x}$.
- 6. State Daurboux's theorem in differentiation.

PART - B

Answer any 7 questions. Each carries 2 marks.

 $(7 \times 2 = 14)$

- 7. Show that every convergent sequence is bounded.
- 8. If a function f is continuous on closed interval [a, b], show that f attains its bonds at least once in [a, b].
- 9. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 10. Show that the series $\frac{1}{(\log 2)^p} + \frac{1}{(\log 3)^p} + \frac{1}{(\log 4)^p} + \dots + \frac{1}{(\log n)^p} + \dots$ diverges for p > 0.

P.T.O.

K22U 2338

- 11. Show that the function defined by $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous at x = 0.
- 12. Show that f(x) = |x| is not differentiable at origin.
- 13. Check whether $f(x) = \frac{x |x|}{x}$ is continuous.
- 14. Establish every monotonic sequence bounded above converges.
- 15. Prove that a necessary condition for convergence of infinite series $\sum u_n$ is $\lim_{n\to\infty}u_n=0$.

PART - C

Answer any 4 questions. Each carries 4 marks.

 $(4 \times 4 = 16)$

- 16. 1) Given an example for bounded sequence and unbounded sequence.
 - 2) Prove that every unbounded sequence with unique limit point is convergent.
- 17. 1) State Bolzano Weierstrass theorem for sets.
 - 2) Prove that a sequence cannot converge to more than one point limit.
- 18. Show that every absolutely convergent series is convergent.
- 19. Examine whether Rolle's theorem is satisfied or not for $f(x) = x^3 4x$ on [-2, 2].
- 20. 1) Show that the series $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\dots$ is convergent.
 - 2) Test the convergence of $\sum \frac{n^2-1}{n^2+1}x^n$.
- 21. Investigate the convergence of Geometric Series.

PART - D

Answer any 2 questions. Each carries 6 marks.

 $(2 \times 6 = 12)$

- 22. State and prove Bolzano Weierstrass theorem for sequences.
- 23. Define Alternating Series. State and prove Leibnitz test for convergence of series.
- 24. If f is continuous on [a, b], then show that f is bounded in [a, b] and f attains its supreme of least once in [a, b].
- 25. 1) State and prove Taylor's theorem.
 - 2) Find the Taylor series expansion of $\cos x$ at x = 0.