

Reg. No.:....

Name:.....

V Semester B.Sc. Degree (CCSS – Reg./Supple./Imp.) Examination, November 2014 CORE COURSE IN MATHEMATICS 5B05 MAT: Vector Analysis

Time: 3 Hours	Max. Weightage: 30

1	١. ا	Fill	in	the	h	lan	ks	
- 1		1 211	11.1	1110		10411	110	

- a) Midpoint of the line segment joining points (x1, y1, z1) and (x2, y2, z2) is
- b) Vector equation of the line through P_0 (x_0 , y_0 , z_0) and parallel to \vec{v} is
- c) If \vec{r} is the position vector of a particle moving along a smooth curve in space, then velocity vector at any time t is _____
- d) The curvature of a straight line is _____ (Weightage 1)

Answer any six from the following (weightage 1 each):

- 2. Find the angle between $\vec{a} = \hat{i} 2\hat{j} 2\hat{k}$ and $\vec{b} = 6\hat{i} + 3\hat{j} + 2\hat{k}$.
- 3. Find the Cartesian equation for the surface $z = r^2$ and identity the surface.
- 4. If $f(x, y) = y \sin xy$, find $\frac{\partial f}{\partial y}$.
- 5. Find $\frac{dy}{dx}$ if $x^2 + \sin y 2y = 0$.
- 6. Define gradient of a scalar field.
- 7. Evaluate $\iint_{R} (1-6x^2y) dxdy$ where R is the region between x=0, x=2, y=-1 and y=1.
- 8. Evaluate $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx$.
- 9. Find the divergence of $\vec{F} = (x^2 y) \hat{i} + (xy y^2) \hat{j}$.
- 10. State Green's theorem in plane.

(Weightage 6×1=6)

Answerany seven from the following (weightage 2 each):

- 11. Find parametric equations for the line through (-3, 2, -3) and (1, -1, 4).
- 12. Find a vector perpendicular to the plane of P(1,-1,0), Q(2,1,-1) and R(-1,1,2).
- 13. Find the length of one turn of the helix $\vec{r}(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$.
- 14. Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0).
- 15. Find the linearization of $f(x, y, z) = x^2 xy + 3 \sin z$ at the point (2, 1, 0).
- 16. Find the derivative of $f(x, y) = x^2 + xy$ at (1, 2) in the direction of the vector $\hat{i} + \hat{j}$.
- 17. Change the order of integration and hence evaluate $\int_0^2 \int_{x^2}^{2x} (4x + 2) dy dx$.
- 18. Find the polar moment of inertia about the origin of a thin plate of density $\delta(x, y) = 1$ bounded by the quarter circle $x^2 + y^2 = 1$ in the first quadrant.
- 19. Show that $\vec{F} = (y \sin z) \hat{i} + (x \sin z) \hat{j} + (xy \cos z) \hat{k}$ is conservative and find a potential for it.
- 20. Find a parametrization of the cylinder $x^2 + (y 3)^2 = 9$, $0 \le z \le 5$.

(Weightage 7x2=14)

Answer any three from the following (weightage 3 each):

- 21. Find the local extreme values of the function $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- 22. Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 23. Evaluate

$$\int_0^3 \int_0^4 \int_{x=y/2}^{x=(y/2)+1} \left(\frac{2x-y}{2} + \frac{z}{3} \right) dx \, dy \, dz$$

by applying the transformation $u = \frac{2x - y}{2}$, $v = \frac{y}{2}$, $w = \frac{z}{3}$.

- 24. Find the circulation of the field $\vec{F} = (x^2 y)\hat{i} + 4z\hat{j} + x^2\hat{k}$ around the curve C in which the plane z = 2 meets the cone $z = \sqrt{x^2 + y^2}$ counterclockwise as viewed from above.
- 25. Verify divergence theorem for $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$.

(Weightage 3×3=9)