K16U 0158

SECTION - C

Answer any four questions. Each question carries a weightage 2.

- 13. From the laws of osmotic pressure derive the Van't Hoff equation.
- 14. What are the characteristics of ideal and non-ideal solutions?
- 15. What are adsorption isotherms? Explain the features of Freundlich adsorption isotherm.
- 16. Derive an equation for the pH of an acidic buffer.
- 17. Calculate the degree of hydrolysis and pH of a 10⁻² M solution of CH₃COONa in water. Given the Ka value of CH₃COOH as 1.80 × 10⁻⁵ at 298 K.
- (Weightage 4×2=8) 18. Explain the construction and working of a calomel electrode.

SECTION - D

Answer any two questions. Each question carries a weightage 4.

- 19. i) State and explain Nernst distribution law. Mention the important limitations of the law (3)(1)
- ii) Distinguish between Deliquescence and efflorescence.
- (2) 20. i) State Kohlrausch's law. Give any three applications of the law
 - ii) Explain the conductometric titration curve for the titration of a strong acid (2) against strong base.
- 21. i) What is electrochemical series? Mention any four applications of (2)electrochemical series
 - ii) What are concentration cells? How are they classified? Give examples. (2)

(Weig	htage	$2 \times 4 = 8$
1	1110000	

K16U 0158

Reg. No.: Name:

> VI Semester B.Sc. Degree (CCSS-Reg./Supple./Improv.) Examination, May 2016 Core Course in Chemistry 6B 13 CHE: PHYSICAL CHEMISTRY - II

Time: 3 Hours

Max. Weightage: 25

SECTION - A

Answer all questions. Each bunch of four questions carries a weightage 1.

- 1. i) Which among the following is an example of a C2v molecule?
 - A) NH₃

B) H₂O

C) BF3

- D) CO2
- ii) Linear molecules with centre of symmetry belong to the point group
- A) D_{3n}

B) C_{3v}

C) D ...

- D) Cov
- iii) Which among the following is not a colligative property?
 - A) Osmotic pressure
- B) Surface tension
- C) Elevation of BP
- D) Depression in FP
- iv) The approximate value of molecular mass obtained for NaCl, by colligative property measurement of its aqueous solution is
 - A) 58.5

B) 117

C) 29

- D) 87.5
- 2. i) Equimolar aqueous solution of which of the following substances will have highest B.P.?
 - A) Urea

B) Sucrose

C) NaCl

D) K2SO4

P.T.O.

12.74	With the second second			- 30 - 30
A	Eutectic	tem	ner	ature
		COLLI	001	cercuit

- B) Critical temperature
- C) Critical solution temperature
- D) Miscibility temperature

iii) Tyndall effect is an example of _____ property of colloid.

- A) Mechanical
- B) Electrical

C) Optical

D) Electrokinetic

iv) When the same quantity of electricity is passed, the amount deposited at the cathode is minimum in the case of

- A) Al (NO₃)₃ solution
- B) CuSO₄ solution
- C) ZnSO₄ solution
- D) AgNO₃ solution

3. i) With increase in dilution, the equivalent conductance of a strong electrolyte

- A) goes on increasing
- B) goes on decreasing
- C) goes on increasing and reaches a limiting value
- D) first decreases and then increases

ii) For the electrolyte Na_2SO_4 , the mean molal activity coefficient $\gamma\pm$, molality 'm' and activity 'a' are related as

- A) $a = 4m^3 (\gamma \pm)^3$
- B) $a = (m\gamma \pm)^2$
- C) $a = 2m^3 (\gamma \pm)^3$
- D) $a=4m(\gamma\pm)^3$

iii) A Lewis acid among the following is

A) NH₃

B) ROH

C) BF₃

D) CN

iv) Aqueous solution of the salt, which is basic in nature is

A) Na₂CO₃

B) NH₄CI

C) K₂SO₄

D) NaCl

 i) A solution of CuSO₄ in which copper rod is immersed is diluted 10 times at 25° C. Then the electrode potential will

- A) remain unchanged
- B) decrease by 0.03 V
- C) increase by 0.03 V
- D) decrease by 0.059 V
- ii) Which is not true? The Vortreunsh amazona oliomizo to avail and more
 - A) In an electrochemical cell, the anode is negative
 - B) In an electrolytic cell the anode is positive
 - C) The electrode potential of SHE is taken as unity
 - D) The pH of the solution in SHE is zero

iii) A hydrogen electrode is set up with a solution of pH = 3. Then the electrode potential at 25° C will be, approximately

- A) -0.18 V
- B) 0.059 V
- C) 0.18 V
- D) Zero

iv) For the cell Zn Zn²⁺(1M) (Cu²⁺(1M) Cu, the Ecell value at 25° C is 1.1V. This can be increased by

- A) increasing the concentration of Zn2+
- B) increasing the concentration of Cu2+
- C) lowering the temperature
- D) both by lowering temperature and increasing the concentration of Cu²⁺

(Weightage 4×1=4)

SECTION-B

Answer any five questions. Each question carries a weightage 1.

- 5. Improper axis of symmetry is also called rotation reflection axis. Why?
- Identify the symmetry elements present in NH₃ molecule.

 When 0.5 g of a non-volatile solute is added to 39 g of benzene, its vapour pressure lowered from 0.850 bar to 0.845 bar. Calculate the molecular mass of the solute.

- 8. Explain Hardy-Schulz rule.
- 9. What are emulsions? How are they classified?
- 10. State the Debye Huckel limiting law. Why it is known so ?
- 11. What are hard and soft acids? Give example.
- 12. Define overvoltage. Mention any two consequences of overvoltage.

(Weightage 5×1=5)