

M 8864

Reg. No. :

II Semester B.Sc. Degree (CCSS – 2014 Admn. – Regular) Examination, May 2015 COMPLEMENTARY COURSE IN CHEMISTRY 2C02 CHE: Chemistry (For Physical and Biological Sciences)

Time: 3 Hours

Max. Marks: 32

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. State law of mass action. Them is seen so not less up to all a more support years never A
- 2. Give an example of photo sensitized reaction.
- 3. State Hardy Schulz rule.
- 4. What are buffer solutions?
- 5. What are pseudo unimolecular reactions?

 $(1 \times 5 = 5)$

SECTION - B*

Answer any four questions. Each question carries 2 marks.

- 6. The half life of a first order reaction is 8 minutes. How long will it take to reduce the concentration to 1% of initial value?
- 7. Explain Grothus Draper law.
- 8. What are the limitations of Beer-Lamberts law?
- Explain the effect of pressure on the equilibrium.
 PCl₅ PCl₃ + Cl₂
- 10. What are protective colloids? Give one example.
- 11. What is activation energy?

 $(2 \times 4 = 8)$

SECTION-C

Ans	swer any three questions. Each question carries 3 marks.	
12.	What are the general characters of a catalytic reaction?	
13.	Why is chemical equilibrium called dynamic?	
14.	Explain the term electrical double layer.	
15.	Discuss the photochemistry of H ₂ - Cl ₂ reaction.	
16.	Write a note on determinate errors.	(3×3=9)
	SECTION - D	
Ans	swer any two questions. Each question carries 5 marks.	
17.	a) Derive integrated rate equation for a first order reaction.	21/2
	b) Explain the graphical method for determining order of reaction.	21/2
18.	a) Explain the principles involved in cation analysis.	ene Inchiv 3
	b) Discuss the principle involved in iodometric titration.	out to five a
19.	a) Give an account of kinetic and optic properties of colloids.	3
	b) How are colloids useful in industry?	2
20.	a) Derive the relation between Kp and Kc.	Aug meet 3
	b) At 500°C the reaction between N ₂ and H ₂ to form NH ₃ has Kc = 6.0 What is the value of Kp for the reaction.	sono odi 2
		(5×2=10)
	the limitations of Beambardaw 2	