

K19P 0112

Reg. No.	:
Name :	Joalle odog-o

IV Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019 (2014 Admission Onwards) PHYSICS PHY 4C14: Optics

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer both questions (either a or b).

 a) Describe He-Ne LASER and explain how population is achieved in this type of laser.

OF

- b) i) Explain the rate equation for a four level laser system.
 - ii) Discuss the waveguide dispersion in optical fibres.
- a) i) With the help of diagram, describe the sum frequency and difference frequency generation.
 - ii) Briefly explain Stimulated Raman Gain Spectroscopy.

OR

- b) i) Discuss power launching in optical fibres.
 - ii) Explain parametric generation of light.

(2×12=24)

SECTION -- B

Answer any four (1 mark for Part a, 3 marks for Part b, 5 marks for Part c).

- 3. a) Explain spiking in Ruby laser.
 - b) Why 4 level laser system is better than 3 level laser system.
 - c) A laser beam of wavelength 740 nm has coherence time $4\times10^{-5}\mathrm{s}$. Deduce the order of magnitude of its coherence length and spectral half-width.

P.T.O.

K19P 0112

- 4. a) What is linear electro optic effect?
 - b) Briefly explain phase modulation using electro-optic effect.
 - c) Sketch and explain an electro optic amplitude modulator using KDP crystals.
- 5. a) What is meant by optical mixing?
 - b) Write a short note on spatial solitons.
- c) In a material at 300K two energy have a wavelength separation of 1 µm. Determine:
 - i) Effective temperature when the levels are equally populate.
 - ii) The effective temperature when the upper level is twice as densely populated as the lower level.
- 6. a) What is meant by signal degradation in optical fibres?
 - b) What is numerical aperture? Derive an expression for it.
 - c) Calculate the V-number and the number of modes possible in a core of radius 50 μ m. If the refractive index of the core is 1.53 and that of the cladding is 1.50, for a light of wavelength 1 μ m.
- 7. a) Give an account of bending losses in optical fibres.
 - b) Explain pulse broadening in optical fibres.
 - c) Explain the generation of third harmonic generation.
- 8. a) What are semiconductor lasers?
 - b) Explain coherent Antistoke's Raman scattering.
 - c) Explain type I and type II phase matching.

 $(4 \times 9 = 36)$